This paper presents an empirical exploration of the use of capsule networks for text classification. While it has been shown that capsule networks are effective for image classification, their validity in the domain of text has not been explored. In this paper, we show that capsule networks indeed have potential for text classification, and that they have several advantages over convolutional neural networks. We further suggest a simple routing method that effectively reduces the computational complexity of dynamic routing. We utilized seven benchmark datasets to demonstrate that capsule networks, along with the proposed routing method provide comparable results.
With the tremendous growth in the number of scientific papers being published, searching for references while writing a scientific paper is a timeconsuming process. A technique that could add a reference citation at the appropriate place in a sentence will be beneficial. In this perspective, context-aware citation recommendation has been researched upon for around two decades. Many researchers have utilized the text data called the context sentence, which surrounds the citation tag, and the metadata of the target paper to find the appropriate cited research. However, the lack of wellorganized benchmarking datasets and no model that can attain high performance has made the research difficult. In this paper, we propose a deep learning based model and well-organized dataset for contextaware paper citation recommendation. Our model comprises a document encoder and a context encoder, which uses Graph Convolutional Networks (GCN) layer and Bidirectional Encoder Representations from Transformers (BERT), which is a pretrained model of textual data. By modifying the related PeerRead dataset, we propose a new dataset called FullTextPeerRead containing context sentences to cited references and paper metadata. To the best of our knowledge, This dataset is the first well-organized dataset for context-aware paper recommendation. The results indicate that the proposed model with the proposed datasets can attain state-of-the-art performance and achieve a more than 28% improvement in mean average precision (MAP) and recall@k.
This paper suggests a method for Subject-Action-Object (SAO) network analysis of patents for technology trends identification by using the concept of function. The proposed method solves the shortcoming of the keyword-based approach to identification of technology trends, i.e., that it cannot represent how technologies are used or for what purpose. The concept of function provides information on how a technology is used and how it interacts with other technologies; the keyword-based approach does not provide such information. The proposed method uses an SAO model and represents ''key concept'' instead of ''key word''. We present a procedure that formulates an SAO network by using SAO models extracted from patent documents, and a method that applies actor network theory to analyze technology implications of the SAO network. To demonstrate the effectiveness of the SAO network this paper presents a case study of patents related to Polymer Electrolyte Membrane technology in Proton Exchange Membrane Fuel Cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.