The SpaceX Inspiration4 mission provided a unique opportunity to study the impact of spaceflight on the human body. Biospecimen samples were collected from the crew at different stages of the mission, including before (L-92, L-44, L-3 days), during (FD1, FD2, FD3), and after (R+1, R+45, R+82, R+194 days) spaceflight, creating a longitudinal sample set. The collection process included samples such as venous blood, capillary dried blood spot cards, saliva, urine, stool, body swabs, capsule swabs, SpaceX Dragon capsule HEPA filter, and skin biopsies, which were processed to obtain aliquots of serum, plasma, extracellular vesicles, and peripheral blood mononuclear cells. All samples were then processed in clinical and research laboratories for optimal isolation and testing of DNA, RNA, proteins, metabolites, and other biomolecules. This paper describes the complete set of collected biospecimens, their processing steps, and long-term biobanking methods, which enable future molecular assays and testing. As such, this study details a robust framework for obtaining and preserving high-quality human, microbial, and environmental samples for aerospace medicine in the Space Omics and Medical Atlas (SOMA) initiative, which can also aid future experiments in human spaceflight and space biology.
Spaceflight poses a unique set of challenges to humans and the hostile spaceflight environment can induce a wide range of increased health risks, including dermatological issues. The biology driving the frequency of skin issues in astronauts is currently not well understood. To address this issue, we used a systems biology approach utilizing NASA’s Open Science Data Repository (OSDR) on spaceflown murine transcriptomic datasets focused on the skin, biomedical profiles from fifty NASA astronauts, and confirmation via transcriptomic data from JAXA astronauts, the NASA Twins Study, and the first civilian commercial mission, Inspiration4. Key biological changes related to skin health, DNA damage & repair, and mitochondrial dysregulation were determined to be involved with skin health risks during spaceflight. Additionally, a machine learning model was utilized to determine key genes driving spaceflight response in the skin. These results can be used for determining potential countermeasures to mitigate spaceflight damage to the skin.
MicroRNAs (miRNAs) are small, non-coding RNA molecules that are post-transcriptional regulators of gene expression. miRNAs have been shown to be key regulators of complicated pathological processes and hence great biomarkers for the early prediction of diseases, such as cardiovascular diseases and radiation-associated alteration after spaceflight. In this study, we present possible antagomir treatments targeting three different miRNAs, miR-16-5p, miR-125b-5p, and let-7a-5p, to mitigate the activity of the spaceflight environment in cardiovascular diseases. We focus on three proteins of interest associated with fibrotic remodeling, TGF-β1, SMAD3, and COL1, analyzing the molecular outcomes of antagomir treatment when exposed to Galactic Cosmic Radiation (GCR), Solar Particle Events (SPE) radiation, and microgravity. These proteins have been shown to play different fibrotic and antifibrotic roles and show molecular changes associated with exposure to the space environment. Furthermore, our results demonstrate the therapeutic potential of antagomirs as a countermeasure for future spaceflight missions.
Objective Metatranscriptomic analysis of RNA viromes on built-environment surfaces is hampered by low RNA yields and high abundance of rRNA. Therefore, we evaluated the quality of libraries, efficiency of rRNA depletion, and viral detection sensitivity using a mock community and a melamine-coated table surface RNA with levels below those required (< 5 ng) with a library preparation kit (NEBNext Ultra II Directional RNA Library Prep Kit). Results Good-quality RNA libraries were obtained from 0.1 ng of mock community and table surface RNA by changing the adapter concentration and number of PCR cycles. Differences in the target species of the rRNA depletion method affected the community composition and sensitivity of virus detection. The percentage of viral occupancy in two replicates was 0.259 and 0.290% in both human and bacterial rRNA-depleted samples, a 3.4 and 3.8-fold increase compared with that for only bacterial rRNA-depleted samples. Comparison of SARS-CoV-2 spiked-in human rRNA and bacterial rRNA-depleted samples suggested that more SARS-CoV-2 reads were detected in bacterial rRNA-depleted samples. We demonstrated that metatranscriptome analysis of RNA viromes is possible from RNA isolated from an indoor surface (representing a built-environment surface) using a standard library preparation kit.
Human space exploration is hazardous, causing molecular changes that can alter astronauts' health. This can include genomic instability, mitochondrial dysfunction, increased inflammation, homeostatic dysregulation, and epigenomic changes. These alterations are similar to changes during aging on Earth. However, little is known about the link between these changes and disease development in space. Frailty syndrome is a robust predictor associated with biological aging, however its existence during spaceflight has not been examined. We used murine data from NASA’s GeneLab and astronaut data from JAXA and Inspiration4 missions to evaluate the presence of biological markers and pathways related to frailty, aging and sarcopenia. We identified changes in gene expression that could be related to the development of a frailty-like condition. These results suggest that the parallels between spaceflight and aging may extend to frailty as well. Future studies examining the utility of a frailty index in monitoring astronaut health appear warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.