Traditionally, the emissions embodied in construction materials have not been considered important; however, they are becoming crucial due to the short time-frame in which the emissions should be reduced. Moreover, evaluating the environmental burden of construction materials has proven problematic and the reliability of the reported impact estimates is questionable. More reliable information from the construction sector is thus urgently needed to back and guide decision-making. Currently, the building sector environmental impact assessments predominantly employ commercial software with environmental impact databases and report results without knowledge about the impact of the software/database choice on the results. In this study, estimates for the embodied environmental impacts of residential construction from the two most widely used life cycle assessment (LCA) database-software combinations, ecoinvent with SimaPro software and GaBi, are compared to recognize the uniformities and inconsistencies. The impacts caused by two residential buildings of different types, a concrete-element multi-story residential building and a detached wooden house, both located in Finland, were assessed, including all building systems with a high level of detail. Based on the ReCiPe Midpoint method, fifteen impact categories were estimated and compared. The results confirm that the tool choice significantly affects the outcome. For the whole building, the difference is significant, around 15%, even in the most widely assessed category of Climate Change, and yields results that lean in different directions for the two cases. In the others, the estimates are entirely different, 40% or more in the majority of the categories and up to several thousand percentages of difference. The main conclusion is that extensive work is still urgently needed to improve the reliability of LCA tools in the building sector in order to provide reliable and trustworthy information for policy-making.
Spargers are mutli-hole injection pipes used in Boiling Water Reactors (BWR) and Advanced Pressurized (AP) reactors to condense steam in large water pools. A steam injection induces heat, momentum and mass sources that depend on the steam injection conditions and can result in thermal stratification or mixing of the pool. Thermal stratification reduces the steam condensation capacity of the pool, increases the pool surface temperature and thus the containment pressure. Development of models with predictive capabilities requires the understanding of basic phenomena that govern the behavior of the complex multi-scale system. The goals of this work are (i) to analyze and interpret the experiments on steam injection into a pool through spargers performed in the large-scale facilities of PPOOLEX and PANDA, and (ii) to discuss possible modelling approaches for the observed phenomena. A scaling approach was developed to address the most important physical phenomena and regimes relevant to prototypic plant conditions. The focus of the tests was on the low steam mass flux and oscillatory bubble condensation regimes, which are expected during a long-term steam injection transient, e.g. in the case of a Station Black Out (SBO). Exploratory tests were also done for chugging and stable jet conditions. The results showed a similar behavior in PPOOLEX and PANDA in terms of jet induced by steam condensation, pool stratification, and development of hot layer and erosion of the cold one. A correlation using the Richardson number is proposed to model the erosion rate of the cold layer as a function of the pool dimensions and steam injection conditions.
The Effective Heat Source (EHS) and Effective Momentum Source (EMS) models have been proposed to predict the development of thermal stratification and mixing during a steam injection into a large pool of water. These effective models are implemented in GOTHIC software and validated against the POOLEX STB-20 and STB-21 tests and the PPOOLEX MIX-01 test. First, the EHS model is validated against STB-20 test which shows the development of thermal stratification. Different numerical schemes and grid resolutions have been tested. A48×114grid with second order scheme is sufficient to capture the vertical temperature distribution in the pool. Next, the EHS and EMS models are validated against STB-21 test. Effective momentum is estimated based on the water level oscillations in the blowdown pipe. An effective momentum selected within the experimental measurement uncertainty can reproduce the mixing details. Finally, the EHS-EMS models are validated against MIX-01 test which has improved space and time resolution of temperature measurements inside the blowdown pipe. Excellent agreement in averaged pool temperature and water level in the pool between the experiment and simulation has been achieved. The development of thermal stratification in the pool is also well captured in the simulation as well as the thermal behavior of the pool during the mixing phase.
Abstract:The purpose of this paper is to compare, from an urban planning perspective, the choice between combined heat and power (CHP) and a ground-source heat pump (HP) as the energy systems of a new residential area in the light of the uncertainty related to the assessments. There has been a strong push globally for CHP due to its climate mitigation potential compared to separate production, and consequently it is often prioritized in planning without questioning. However, the uncertainties in assessing the emissions from CHP and alternative options in a certain planning situation make it very difficult to give robust decision guidelines. In addition, even the order of magnitude of the climate impact of a certain plan is actually difficult to assess robustly. With a case study of the new residential development of Härmälänranta in Tampere, Finland, we show how strongly the uncertainties related to (1) utilizing average or marginal electricity as the reference; (2) assigning emissions intensities for the production; and (3) allocating the emissions from CHP to heat and electricity affect OPEN ACCESSEnergies 2015, 8 9138 the results and lead to varying decision guidelines. We also depict how a rather rarely utilized method in assigning the emissions from CHP is the most robust for planning support.
Spargers are multi-hole injection pipes used in Boiling Water Reactors (BWR) and Generation III/III+ Pressurized Water Reactors (PWR) to condense steam in large water pools. During the steam injection, high pool surface temperatures induced by thermal stratification can lead to higher containment pressures compared with completely mixed pool conditions, the former posing a threat for plant safety. The Effective Heat Source (EHS) and Effective Momentum Source (EMS) models were previously developed and validated for the modelling of a steam injection through blowdown pipes. The goal of this paper is to extend the EHS/EMS model capabilities towards steam injection through multi-hole spargers. The models are implemented in ANSYS Fluent 17.0 Computational Fluid Dynamics (CFD) code and calibrated against the spargers experiments performed in the PPOOLEX and PANDA facilities, analysed by the authors in [1] (Gallego-Marcos, I., et al., 2018). CFD modelling guidelines are established for the adequate simulation of the pool behaviour. A new correlation is proposed to model the turbulent production and dissipation caused by buoyancy. Sensitivity studies addressing the effect of different assumptions on the effective momentum magnitude, profile, angle and turbulence are presented. Calibration of the effective momentum showed an inverse proportionality to the sub-cooling. Differences between the effective momentum calibrated for PPOOLEX and PANDA are discussed. Analysis of the calculated flow above the cold stratified layer showed that the erosion of the layer is induced by the action of turbulence rather than mean shear flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.