Traditionally, the emissions embodied in construction materials have not been considered important; however, they are becoming crucial due to the short time-frame in which the emissions should be reduced. Moreover, evaluating the environmental burden of construction materials has proven problematic and the reliability of the reported impact estimates is questionable. More reliable information from the construction sector is thus urgently needed to back and guide decision-making. Currently, the building sector environmental impact assessments predominantly employ commercial software with environmental impact databases and report results without knowledge about the impact of the software/database choice on the results. In this study, estimates for the embodied environmental impacts of residential construction from the two most widely used life cycle assessment (LCA) database-software combinations, ecoinvent with SimaPro software and GaBi, are compared to recognize the uniformities and inconsistencies. The impacts caused by two residential buildings of different types, a concrete-element multi-story residential building and a detached wooden house, both located in Finland, were assessed, including all building systems with a high level of detail. Based on the ReCiPe Midpoint method, fifteen impact categories were estimated and compared. The results confirm that the tool choice significantly affects the outcome. For the whole building, the difference is significant, around 15%, even in the most widely assessed category of Climate Change, and yields results that lean in different directions for the two cases. In the others, the estimates are entirely different, 40% or more in the majority of the categories and up to several thousand percentages of difference. The main conclusion is that extensive work is still urgently needed to improve the reliability of LCA tools in the building sector in order to provide reliable and trustworthy information for policy-making.
Abstract:Buildings are the key components of urban areas and society as a complex system. A life cycle assessment was applied to estimate the environmental impacts of the resources applied in the building envelope, floor slabs, and interior walls of the Vaettaskóli-Engi building in Reykjavik, Iceland. The scope of this study included four modules of extraction and transportation of raw material to the manufacturing site, production of the construction materials, and transport to the building site, as described in the standard EN 15804. The total environmental effects of the school building in terms of global warming potential, ozone depletion potential, human toxicity, acidification, and eutrophication were calculated. The total global warming potential impact was equal to 255 kg of CO 2 eq/sqm, which was low compared to previous studies and was due to the limited system boundary of the current study. The effect of long-distance overseas transport of materials was noticeable in terms of acidification (25%) and eutrophication (31%) while it was negligible in other impact groups. The results also concluded that producing the cement in Iceland caused less environmental impact in all five impact categories compared to the case in which the cement was imported from Germany. The major contribution of this work is that the environmental impacts of different plans for domestic production or import of construction materials to Iceland can be precisely assessed in order to identify effective measures to move towards a sustainable built environment in Iceland, and also to provide consistent insights for stakeholders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.