Herein we report the synthesis of cellulose nanocrystals (CNCs) grafted with poly(acrylic acid) (PAA) chains of different lengths using Cu-mediated surface initiated-controlled radical polymerization (SI-CRP). First, poly(tert-butylacrylate) (PtBA) brushes were synthesized; then, subsequent acid hydrolysis was used to furnish PAA brushes tethered onto the CNC surfaces. The CNCs were chemically modified to create initiator moieties on the CNC surfaces using chemical vapor deposition (CVD) and continued in solvent phase in DMF. A density of initiator groups of 4.6 bromine ester groups/nm(2) on the CNC surface was reached, suggesting a dense functionalization and a promising starting point for the controlled/living radical polymerization. The SI-CRP of tert-butylacrylate proceeded in a well-controlled manner with the aid of added sacrificial initiator, yielding polymer brushes with polydispersity values typically well below 1.12. We calculated the polymer brush grafting density to almost 0.3 chains/nm(2), corresponding to high grafting densities and dense polymer brush formation on the nanocrystals. Successful rapid acid hydrolysis to remove the tert-butyl groups yielded pH-responsive PAA-polyelectrolyte brushes bound to the CNC surface. Individually dispersed rod-like nanoparticles with brushes of PtBA or PAA were clearly visualized by AFM and TEM imaging.
Despite the structural, load-bearing role of cellulose in the plant kingdom, countless efforts have been devoted to degrading this recalcitrant polysaccharide, particularly in the context of biofuels and renewable nanomaterials. Herein, we show how the exposure of plant-based fibers to HCl vapor results in rapid degradation with simultaneous crystallization. Because of the unchanged sample texture and the lack of mass transfer out of the substrate in the gas/solid system, the changes in the crystallinity could be reliably monitored. Furthermore, we describe the preparation of cellulose nanocrystals in high yields and with minimal water consumption. The study serves as a starting point for the solid-state tuning of the supramolecular properties of morphologically heterogeneous biological materials.
Controlled surface-initiated atom transfer radical polymerization (SI-ATRP) has previously been described as a versatile method that allows grafting polymer brushes on purely cellulosic forms of nanocelluloses, i.e., cellulose nanocrystal (CNC) nanorods and bacterial cellulose (BC) networks. However, corresponding SI-ATRP on long and entangled cellulose nanofibers (CNFs), having typically more complex composition and partly disordered structure, has been only little reported due to practical and synthetic challenges, in spite of technical need. In this work, the feasibility of SI-ATRP on CNFs is exemplified on the polymerization of poly(n-butyl acrylate) and poly(2-(dimethyl amino)ethyl methacrylate) brushes, both of which showed first order polymerization kinetics up to a chain length of ca. 800 repeat units. By constructing high and low initiator densities on CNF surfaces, we also show that, surprisingly, a higher grafting density of polymer brushes around CNF causes noticeable degradation of the CNF nanofibrillar backbone, whereas lower grafting densities retained the structural integrity of the CNF. We tentatively suggest that the side-chain brushes strain the disordered domains of CNF, causing degradation, which can be suppressed using a lower degree of substitution. Therefore, SI-ATRP of CNFs becomes subtler than that of, for example, CNCs, and careful balance has to be achieved between high density of brushes and excessive CNF degradation.
The development of photoactive and biocompatible nanostructures is a highly desirable goal to address the current threat of antibiotic resistance. Here, we describe a novel supramolecular biohybrid nanostructure based on the non-covalent immobilization of cationic zinc phthalocyanine (ZnPc) derivatives onto unmodified cellulose nanocrystals (CNC), following an easy and straightforward protocol, in which binding is driven by electrostatic interactions. These non-covalent biohybrids show strong photodynamic activity against S. aureus and E. coli, representative examples of Gram-positive and Gram-negative bacteria, respectively, and C. albicans, a representative opportunistic fungal pathogen, outperforming the free ZnPc counterparts and related nanosystems in which the photosensitizer is covalently linked to the CNC surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.