Surface quaternized cellulose nanofibrils were mechanically disintegrated from wood pulp that was pretreated through a reaction with glycidyltrimethylammonium chloride. The resulting quaternized cellulose nanofibrils (Q-NFC) with trimethylammonium chloride contents of 0.59-2.31 mmol g À1 were characterized by conductometric titration, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM). When the trimethylammonium chloride content on cellulose reached approximately 0.79 mmol g À1 corresponding to a degree of substitution of 0.13 per bulk anhydroglucose unit, highly viscous and transparent aqueous dispersions of cellulose nanofibrils were obtained by mechanical homogenization of the chemically pretreated cellulose/water slurries. AFM observation showed that the dispersions consisted of individualized cellulose I nanofibrils 1.6-2.1 nm in width and 1.3-2.0 mm in length.Cellulose nanopapers prepared from the Q-NFC aqueous dispersions exhibited high tensile strength (ca.200 MPa) and Young's modulus (ca. 10 GPa) despite high porosity (37-48%). The nanopapers also demonstrated ultrahigh water absorbency (750 g g À1 ) with high surface cationic charge density. Stable hydrogels were obtained after swelling the nanopaper in water. The Q-NFC nanofibrils also possessed high anionic dye adsorption capability. The adsorption capacity increased with increasing trimethylammonium chloride content on cellulose.
The use of biopolymers obtained from renewable resources is currently growing and they have found unique applications as matrices and/or nanofillers in 'green' nanocomposites. Grafting of polymer chains to the surface of cellulose nanofillers was also studied to promote the dispersion of cellulose nanocrystals in hydrophobic polymer matrices. The aim of this study was to modify the surface of cellulose nanocrystals by grafting from L-lactide by ring-opening polymerization in order to improve the compatibility of nanocrystals and hydrophobic polymer matrices. The effectiveness of the grafting was evidenced by the long-term stability of a suspension of poly(lactic acid)-grafted cellulose nanocrystals in chloroform, by the presence of the carbonyl peak in modified samples determined by Fourier transform infrared spectroscopy and by the modification in C1s contributions observed by X-ray photoelectron spectroscopy. No modification in nanocrystal shape was observed in birefringence studies and transmission electron microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.