Surface quaternized cellulose nanofibrils were mechanically disintegrated from wood pulp that was pretreated through a reaction with glycidyltrimethylammonium chloride. The resulting quaternized cellulose nanofibrils (Q-NFC) with trimethylammonium chloride contents of 0.59-2.31 mmol g À1 were characterized by conductometric titration, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM). When the trimethylammonium chloride content on cellulose reached approximately 0.79 mmol g À1 corresponding to a degree of substitution of 0.13 per bulk anhydroglucose unit, highly viscous and transparent aqueous dispersions of cellulose nanofibrils were obtained by mechanical homogenization of the chemically pretreated cellulose/water slurries. AFM observation showed that the dispersions consisted of individualized cellulose I nanofibrils 1.6-2.1 nm in width and 1.3-2.0 mm in length.Cellulose nanopapers prepared from the Q-NFC aqueous dispersions exhibited high tensile strength (ca.200 MPa) and Young's modulus (ca. 10 GPa) despite high porosity (37-48%). The nanopapers also demonstrated ultrahigh water absorbency (750 g g À1 ) with high surface cationic charge density. Stable hydrogels were obtained after swelling the nanopaper in water. The Q-NFC nanofibrils also possessed high anionic dye adsorption capability. The adsorption capacity increased with increasing trimethylammonium chloride content on cellulose.
A macroscopic ribbon of oriented cellulose nanofibrils bearing polyethylene glycol is fabricated by stretching the cellulose nanofibrils network structure in the hydrogel state. The covalently grafted polyethylene glycol on the nanofibril surface facilitates the alignment and compartmentalization of individual nanofibrils in the ribbon. The ribbon has ultrahigh tensile strength (576 ± 54 MPa), modulus (32.3 ± 5.7 GPa), high transparency, and haze.
Procedures for chitin nanofiber or nanocrystal extraction from Crustaceans modify the chitin structure significantly, through surface deacetylation, surface oxidation and/or molar mass degradation. Here, very mild conditions were used to disintegrate chitin fibril bundles and isolate low protein content individualized chitin nanofibers, and prepare nanostructured high-strength chitin membranes. Most of the strongly 'bound' protein was removed. The degree of acetylation, crystal structure as well as length and width of the native chitin microfibrils in the organism were successfully preserved. Atomic force microscopy and scanning transmission electron microscopy, showed chitin nanofibers with width between 3 and 4 nm. Chitin membranes were prepared by filtration of hydrocolloidal nanofiber suspensions. Mechanical and optical properties were measured. The highest data so far reported for nanostructured chitin membranes was obtained for ultimate tensile strength, strain to failure and work to fracture. Strong correlation was observed between low residual protein content and high tensile properties and the reasons for this are discussed.
Cellulose nanofibrils (CNFs) are difficult to redisperse in water after they have been completely dried due to the irreversible agglomeration of cellulose during drying. Here, we have developed a simple process to prepare water-redispersible dried CNFs by the adsorption of small amounts of carboxymethyl cellulose (CMC) and oven drying. The adsorption of CMC onto CNFs in water suspensions at 22 and 121°C was studied, and the adsorbed amount of CMC was measured via conductimetric titration. The waterredispersibility of dried CNFs adsorbed with different amounts of CMC was characterized by sedimentation test. Above a critical threshold of CMC adsorption, i.e. 2.3 wt%, the oven dried CNF-CMC sample was fully redispersible in water. The morphology, rheological, and mechanical properties of water-redispersed CNF-CMC samples were investigated by field emission scanning electron microscopy, viscosity measurement, and tensile test, respectively. The waterredispersed CNFs preserved the original properties of never dried CNFs. This new method will facilitate the production, transportation and storage, and largescale industrial applications of CNFs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.