MicroRNAs (miRNAs) are small RNA molecules that negatively regulate protein coding gene expression and are thought to play a critical role in many biological processes. Aberrant levels of miRNAs have been associated with numerous diseases and cancers, and as such, miRNAs have gain much interests as diagnostic biomarkers, and as therapeutic targets. However, their role in autoimmunity is largely unknown. The aims of this study are to: (1) identify differentially expressed miRNAs in human primary biliary cirrhosis (PBC); (2) validate these independently; and (3) indentify potential targets of differentially expressed miRNAs. We compared the expression of 377 miRNAs in explanted livers form subjects with PBC versus controls with normal liver histology. A total of 35 independent miRNAs were found to be differentially expressed in PBC (p< 0.001). Quantitative PCR was employed to validate down-regulation of microRNA-122a (miR-122a) and miR-26a and the increased expression of miR-328 and miR-299-5p. The predicted targets of these miRNAs are known to affect cell proliferation, apoptosis, inflammation, oxidative stress, and metabolism. Our data are the first to demonstrate that PBC is characterized by altered expression of hepatic miRNA; however additional studies are required to demonstrate a causal link between those miRNA and the development of PBC.
BackgroundThe delta smelt (Hypomesus transpacificus) is a pelagic fish species listed as endangered under both the USA Federal and Californian State Endangered Species Acts and considered an indicator of ecosystem health in its habitat range, which is limited to the Sacramento-San Joaquin estuary in California, USA. Anthropogenic contaminants are one of multiple stressors affecting this system, and among them, current-use insecticides are of major concern. Interrogative tools are required to successfully monitor effects of contaminants on the delta smelt, and to research potential causes of population decline in this species. We have created a microarray to investigate genome-wide effects of potentially causative stressors, and applied this tool to assess effects of the pyrethroid insecticide esfenvalerate on larval delta smelt. Selected genes were further investigated as molecular biomarkers using quantitative PCR analyses.ResultsExposure to esfenvalerate affected swimming behavior of larval delta smelt at concentrations as low as 0.0625 μg.L-1, and significant differences in expression were measured in genes involved in neuromuscular activity. Alterations in the expression of genes associated with immune responses, along with apoptosis, redox, osmotic stress, detoxification, and growth and development appear to have been invoked by esfenvalerate exposure. Swimming impairment correlated significantly with expression of aspartoacylase (ASPA), an enzyme involved in brain cell function and associated with numerous human diseases. Selected genes were investigated for their use as molecular biomarkers, and strong links were determined between measured downregulation in ASPA and observed behavioral responses in fish exposed to environmentally relevant pyrethroid concentrations.ConclusionsThe results of this study show that microarray technology is a useful approach in screening for, and generation of molecular biomarkers in endangered, non-model organisms, identifying specific genes that can be directly linked with sublethal toxicological endpoints; such as changes in expression levels of neuromuscular genes resulting in measurable swimming impairments. The developed microarrays were successfully applied on larval fish exposed to esfenvalerate, a known contaminant of the Sacramento-San Joaquin estuary, and has permitted the identification of specific biomarkers which could provide insight into the factors contributing to delta smelt population decline.
A two-genome microarray for the rice pathogens Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola and its use in the discovery of a difference in their regulation of hrp genes AbstractBackground: Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc) are bacterial pathogens of the worldwide staple and grass model, rice. Xoo and Xoc are closely related but Xoo invades rice vascular tissue to cause bacterial leaf blight, a serious disease of rice in many parts of the world, and Xoc colonizes the mesophyll parenchyma to cause bacterial leaf streak, a disease of emerging importance. Both pathogens depend on hrp genes for type III secretion to infect their host. We constructed a 50-70 mer oligonucleotide microarray based on available genome data for Xoo and Xoc and compared gene expression in Xoo strains PXO99 A and Xoc strain BLS256 grown in the rich medium PSB vs. XOM2, a minimal medium previously reported to induce hrp genes in Xoo strain T7174.
Our laboratory has hypothesized that xenobiotic modification of the native lipoyl moiety of the major mitochondrial autoantigen, the E2 subunit of the pyruvate dehydrogenase complex (PDC-E2), may lead to loss of self-tolerance in primary biliary cirrhosis (PBC). This thesis is based on the finding of readily detectable levels of immunoreactivity of PBC sera against extensive panels of protein microarrays containing mimics of the inner lipoyl domain of PDC-E2 and subsequent quantitative structure-activity relationships (QSARs). Importantly, we have demonstrated that murine immunization with one such mimic, 2-octynoic acid coupled to bovine serum albumin (BSA), induces antimitochondrial antibodies (AMAs) and cholangitis. Based upon these data, we have focused on covalent modifications of the lipoic acid disulfide ring and subsequent analysis of such xenobiotics coupled to a 15mer of PDC-E2 for immunoreactivity against a broad panel of sera from patients with PBC and controls. Our results demonstrate that AMA-positive PBC sera demonstrate marked reactivity against 6,8-bis(acetylthio)octanoic acid, implying that chemical modification of the lipoyl ring, i.e. disruption of the S-S disulfide, renders lipoic acid to its reduced form that will promote xenobiotic modification. This observation is particularly significant in light of the function of the lipoyl1oiety in electron transport of which the catalytic disulfide constantly opens and closes and, thus, raises the intriguing thesis that common electrophilic agents, i.e. acetaminophen or non-steroidal anti-inflammatory drugs (NSAIDs), may lead to xenobiotic modification in genetically susceptible individuals that results in the generation of AMAs and ultimately clinical PBC.
The delta smelt (Hypomesus transpacificus) is an endangered pelagic fish species endemic to the Sacramento-San Joaquin estuary (CA, USA), and considered an indicator of ecosystem health. Copper is a contaminant of concern in Californian waterways that may affect the development and survival of this endangered species. The experimental combination of molecular biomarkers with higher level effects may allow for interpretation of responses in a functional context that can be used to predict detrimental outcomes caused by exposure. A delta smelt microarray was developed and applied to screen for candidate molecular biomarkers that may be used in monitoring programs. Functional classifications of microarray responses were used along with quantitative polymerase chain reaction determining effects upon neuromuscular, digestive, and immune responses in Cu-exposed delta smelt. Differences in sensitivity were measured between juveniles and larvae (median lethal concentration = 25.2 and 80.4 µg/L Cu(2+), respectively). Swimming velocity declined with higher exposure concentrations in a dose-dependent manner (r = -0.911, p < 0.05), though was not statistically significant to controls. Genes encoding for aspartoacylase, hemopexin, α-actin, and calcium regulation proteins were significantly affected by exposure and were functionally interpreted with measured swimming responses. Effects on digestion were measured by upregulation of chitinase and downregulation of amylase, whereas downregulation of tumor necrosis factor indicated a probable compromised immune system. Results from this study, and many others, support the use of functionally characterized molecular biomarkers to assess effects of contaminants in field scenarios. We thus propose that to attribute environmental relevance to molecular biomarkers, research should concentrate on their application in field studies with the aim of assisting monitoring programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.