Rove beetles of the tribe Quediini are abundant predators in humid microhabitats of forested, open, synanthropic or subterranean ecosystems, with just over 800 species distributed across the temperate and subtropical regions of the Northern Hemisphere. Previous molecular phylogenies included only a limited representation of this diversity but have already indicated that Quedius, containing the majority of Quediini species, is polyphyletic. Six genera, historically associated with Quediini but now Staphylininae incertae sedis, are known only from few pinned specimens and have never been sequenced. Recent synergy between target enrichment phylogenomics, low‐input sequencing of dry, pinned insect specimens and advances in alpha taxonomic knowledge have made comprehensive sampling of Quediini tractable. Here we developed a novel probe set specialized for anchored hybrid enrichment of 1229 single‐copy orthologous loci in Staphylinidae. In one of the largest target enrichment phylogenies of insects to‐date, we sequenced 201 ingroup taxa to clearly delimit monophyletic Quediini within Staphylininae and resolve relationships within this tribe, with 46% of sampled taxa derived from pinned specimens (0–45 years old). Maximum likelihood and coalescent phylogenetic analyses produced well‐resolved, congruent topologies that will serve as a framework for further exploration of this radiation and its necessary generic revision. The inclusion of nearly all remaining Staphylininae incertae sedis genera, all known only from pinned specimens, resulted in the creation of Quelaestrygonini Brunke, trib. n. and revised concepts for Cyrtoquediini and Indoquediini. Quediini was resolved as monophyletic with the transfer of Q. elevatus and Q. nigropolitus to other tribes but Quedius and its subgenera Microsaurus, Distichalius and Raphirus were shown to be para‐ or polyphyletic. Based on the results of our analyses, Velleiopsis Fairmaire, 1882 syn. n. and Megaquedius Casey, 1915 syn. n. are synonymized with Microsaurus Dejean, 1833 resulting in: Q. (Microsaurus) marginiventris (Fairmaire) comb. n., Q. (M.) varendorffi (Reitter) comb.n. Several species of Quedius were transferred from Microsaurus to Distichalius (Q. aethiops Smetana, Q. biann Smetana, Q. cingulatus Smetana and Q. taruni Smetana), Distichalius to Raphirus (Q. fagelianus Scheerpeltz) and Microsaurus to Raphirus (Q. mixtus Eppelsheim and Q. persicus Korge).
In order to classify and taxonomically describe the first two fossil Othiini (Coleoptera: Staphylinidae: Staphylininae) species from three well-preserved specimens in Cretaceous Burmese amber, a phylogenetic analysis was conducted, combining extant and extinct taxa. A dataset of 76 morphological characters scored for 33 recent species across the subfamilies Staphylininae and Paederinae was analysed using maximum parsimony and Bayesian inference methods. The many differing phylogenetic hypotheses for higher-level relationships in the large rove beetle subfamilies Staphylininae and Paederinae were summarized and their hitherto known fossil record was reviewed. Based on the analyses, the new extinct genus Vetatrecus gen.n. is described with two new species: V. adelfiae sp.n. and V. secretum sp.n. Both species share character states that easily distinguish them from all recent Othiini and demonstrate a missing morphological link between subfamilies Staphylininae and Paederinae. This is the first morphology-based evidence for the paraphyly of Staphylininae with respect to Paederinae, suggested earlier by two independent molecular-based phylogenies of recent taxa. Our newly discovered stem lineage of Othiini stresses the importance of fossils in phylogenetic analyses conducted with the aim of improving the natural classification of extant species. It also suggests that the definitions of Staphylininae and Paederinae, long-established family-group taxa, may have to be reconsidered.This published work has been registered in ZooBank, http://zoobank.org/urn:lsid: zoobank.org:pub
Paederinae, a diverse subfamily of rove beetles (Staphylinidae), is poorly explored with an outdated subtribal and generic classification lacking proper phylogenetic perspective. Therefore, the discovery of two Baltic amber fossil specimens resembling the genera Micrillus and Scymbalium, which are particularly challenging in terms of systematics, called for a thorough analysis to infer their phylogenetic position and their ecological requirements. The fossils were examined with light microscopy supplemented by X-ray micro-computed tomography, and then scored into a Paederinae-specific matrix of 99 morphological characters, along with a broad sample of recent Paederinae and non-paederine outgroups. Morphological phylogenetic analyses were conducted, using Bayesian Inference and Maximum Parsimony. The obtained phylogeny confirmed that the genera Scymbalium and Micrillus form a lineage outside Lathrobiina; therefore, both genera are now classified as Lathrobiini incertae sedis pending a more inclusive phylogenetic work on Paederinae. The analysis firmly placed both fossils in that recent lineage, albeit rendering Micrillus paraphyletic with respect to Scymbalium. Without a more extensive analysis based on the revised world fauna, any systematic changes would be premature. Thus, the fossils are described as Micrillus electrus, sp. nov. and Scymbalium phaethoni, sp. nov. in accordance with the current diagnoses of both genera. Given that the recent species of Micrillus and Scymbalium are predominantly thermophilic and mainly confined to dry open landscapes in Africa, southern Eurasia and Australia, the finding of Baltic amber representatives implies the very diverse landscape and the equable (sub)tropical palaeoclimatic conditions of the Eocene amberiferous ‘forest’, the latter being the subject of continued debates.
Light is an important environmental cue, and exposure to artificial light at night (ALAN) may disrupt organismal physiology and behavior. We investigated whether ALAN led to changes in clock-gene expression, diel activity patterns, and fecundity in laboratory populations of the mosquito Culex pipiens f. molestus (Diptera, Culicidae), a species that occurs in urban areas and is thus regularly exposed to ALAN. Populations were kept under 16hours (h):8h light:dark cycles or were subjected to an additional 3.5 h of light (100–300 lx) in the evenings. ALAN induced significant changes in expression in all genes studied, either alone (period) or as an interaction with time (timeless, cryptochrome2, Clock, cycle). Changes were sex-specific: period was down-regulated in both sexes, cycle was up-regulated in females, and Clock was down-regulated in males. ALAN-exposed mosquitoes were less active during the extra-light phase, but exposed females were more active later in the night. ALAN-exposed females also produced smaller and fewer eggs. Our findings indicate a sex-specific impact of ALAN on the physiology and behavior of Culex pipiens f. molestus and that changes in clock-gene expression, activity, and fecundity may be linked.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.