Activation by thioesterification to coenzyme A is a prerequisite for most reactions involving fatty acids. Enzymes catalyzing activation, acyl-CoA synthetases, have been classified by their chain length specificities. The most recently identified family is the very longchain acyl-CoA synthetases (VLCS). Although several members of this group are capable of activating very long-chain fatty acids (VLCFA), one is a bile acid-CoA synthetase, and others have been characterized as fatty acid transport proteins. It was reported that the Drosophila melanogaster mutant bubblegum (BGM) had elevated VLCFA and that the product of the defective gene had sequence homology to acyl-CoA synthetases. Therefore, we cloned full-length cDNA for a human homolog of BGM, and we investigated the properties of its protein product, hsBG, to determine whether it had VLCS activity. Northern blot analysis showed that hsBG is expressed primarily in brain. Compared with vectortransfected cells, COS-1 cells expressing hsBG had increased acyl-CoA synthetase activity with either longchain fatty acid (2.4-fold) or VLCFA (2.6-fold) substrates. Despite this increased VLCFA activation, hsBG-expressing cells did not have increased rates of VLCFA degradation. Confocal microscopy showed that hsBG had a cytoplasmic localization in some COS-1 cells expressing the protein, whereas it appeared to associate with plasma membrane in others. Fractionation of these cells revealed that most of the hsBG-dependent acyl-CoA synthetase activity was soluble and not membrane-bound. Immunoaffinity-purified hsBG from transfected COS-1 cells was enzymatically active. hsBG and hsVLCS are only 15% identical, and comparison with sequences of two conserved motifs from all known families of acylCoA synthetases revealed that hsBG along with the D. melanogaster and murine homologs comprise a new family of acyl-CoA synthetases. Thus, two protein families are now known that contain enzymes capable of activating VLCFA. Because hsBG is expressed in brain but previously described VLCSs were not highly expressed in this organ, hsBG may play a central role in brain VLCFA metabolism and myelinogenesis.
Background: Holoprosencephaly (HPE) is the most common structural malformation of the developing forebrain in humans. The aetiology is heterogeneous and remains unexplained in approximately 75% of patients. Objective: To examine cholesterol biosynthesis in lymphoblastoid cell lines of 228 patients with HPE, since perturbations of cholesterol homeostasis are an important model system to study HPE pathogenesis in animals. Methods: An in vitro loading test that clearly identifies abnormal increase of C27 sterols in lymphoblast-derived cells was developed using [2-14C] acetate as substrate. Results: 22 (9.6%) HPE cell lines had abnormal sterol pattern in the in vitro loading test. In one previously reported patient, Smith–Lemli–Opitz syndrome was diagnosed, whereas others also had clearly reduced cholesterol biosynthesis of uncertain cause. The mean (SD) cholesterol levels were 57% (15.3%) and 82% (4.7%) of total sterols in these cell lines and controls, respectively. The pattern of accumulating sterols was different from known defects of cholesterol biosynthesis. In six patients with abnormal lymphoblast cholesterol metabolism, additional mutations in genes known to be associated with HPE or chromosomal abnormalities were observed. Conclusions: Impaired cholesterol biosynthesis may be a contributing factor in the cause of HPE and should be considered in the evaluation of causes of HPE, even if mutations in HPE-associated genes have already been found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.