High visual acuity is essential for many tasks, from recognizing distant friends to driving a car. While much is known about how the eye's optics and anatomy contribute to spatial resolution, possible influences from eye movements are rarely considered. Yet humans incessantly move their eyes, and it has long been suggested that oculomotor activity enhances fine pattern vision. Here we examine the role of eye movements in the most common assessment of visual acuity, the Snellen eye chart. By precisely localizing gaze and actively controlling retinal stimulation, we show that fixational behavior improves acuity by more than 0.15 logMAR, at least 2 lines of the Snellen chart. This improvement is achieved by adapting both microsaccades and ocular drifts to precisely position the image on the retina and adjust its motion. These findings show that humans finely tune their fixational eye movements so that they greatly contribute to normal visual acuity.
Humans use rapid eye movements (saccades) to inspect stimuli with the foveola, the region of the retina where receptors are most densely packed. It is well established that visual sensitivity is generally attenuated during these movements, a phenomenon known as saccadic suppression. This effect is commonly studied with large, often peripheral, stimuli presented during instructed saccades. However, little is known about how saccades modulate the foveola and how the resulting dynamics unfold during natural visual exploration. Here we measured the foveal dynamics of saccadic suppression in a naturalistic high-acuity task, a task designed after primates’ social grooming, which—like most explorations of fine patterns—primarily elicits minute saccades (microsaccades). Leveraging on recent advances in gaze-contingent display control, we were able to systematically map the perisaccadic time course of sensitivity across the foveola. We show that contrast sensitivity is not uniform across this region and that both the extent and dynamics of saccadic suppression vary within the foveola. Suppression is stronger and faster in the most central portion, where sensitivity is generally higher and selectively rebounds at the onset of a new fixation. These results shed light on the modulations experienced by foveal vision during the saccade-fixation cycle and explain some of the benefits of microsaccades.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.