The AXL receptor tyrosine kinase ( RTK ) is involved in partial epithelial‐to‐mesenchymal transition ( EMT ) and inflammation – both main promoters of renal fibrosis development. The study aim was to investigate the role of AXL inhibition in kidney fibrosis due to unilateral ureteral obstruction ( UUO ). Eight weeks old male C57 BL /6 mice underwent UUO and were treated with oral AXL inhibitor bemcentinib ( n = 22), Angiotensin‐converting enzyme inhibitor ( ACEI , n = 10), ACEI and bemcentinib ( n = 10) or vehicle alone ( n = 22). Mice were sacrificed after 7 or 15 days and kidney tissues were analyzed by immunohistochemistry ( IHC ), western blot, ELISA , Sirius Red ( SR ) staining, and hydroxyproline (Hyp) quantification. RNA was extracted from frozen kidney tissues and sequenced on an Illumina HiSeq4000 platform. After 15 days the ligated bemcentinib‐treated kidneys showed less fibrosis compared to the ligated vehicle‐treated kidneys in SR analyses and Hyp quantification. Reduced IHC staining for Vimentin ( VIM ) and alpha smooth muscle actin ( α SMA ), as well as reduced mRNA abundance of key regulators of fibrosis such as transforming growth factor ( Tgfβ ), matrix metalloproteinase 2 ( Mmp2 ), Smad2 , Smad4 , myofibroblast activation ( Aldh1a2 , Crlf1 ), and EMT ( Snai1,2, Twist ), in ligated bemcentinib‐treated kidneys was compatible with reduced (partial) E MT induction. Furthermore, less F4/80 positive cells, less activity of pathways related to the immune system and lower abundance of MCP 1, MCP 3, MCP 5, and TARC in ligated bemcentinib‐treated kidneys was compatible with reduction in inflammatory infiltrates by bemcentinib treatment. The AXL RTK pathway represents a promising target for pharmacologic therapy of kidney fibrosis.
Renal fibrosis is a progressive histological manifestation leading to chronic kidney disease (CKD) and associated with mitochondrial dysfunction. In previous work, we showed that Bemcentinib, an Axl receptor tyrosine kinase inhibitor, reduced fibrosis development. In this study, to investigate its effects on mitochondrial dysfunction in renal fibrosis, we analysed genome‐wide transcriptomics data from a unilateral ureter obstruction (UUO) murine model in the presence or absence of bemcentinib (n = 6 per group) and SHAM‐operated (n = 4) mice. Kidney ligation resulted in dysregulation of mitochondria‐related pathways, with a significant reduction in the expression of oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), citric acid cycle (TCA), response to reactive oxygen species and amino acid metabolism‐related genes. Bemcentinib treatment increased the expression of these genes. In contrast, AKT/PI3K signalling pathway genes were up‐regulated upon UUO, but bemcentinib largely inhibited their expression. At the functional level, ligation reduced mitochondrial biomass, which was increased upon bemcentinib treatment. Serum metabolomics analysis also showed a normalizing amino acid profile in UUO, compared with SHAM‐operated mice following bemcentinib treatment. Our data suggest that mitochondria and mitochondria‐related pathways are dramatically affected by UUO surgery and treatment with Axl‐inhibitor bemcentinib partially reverses these effects.
We have identified platelet-derived growth factor (PDGF)-CC as a potent profibrotic mediator in kidney fibrosis and pro-angiogenic mediator in glomeruli. Because renal fibrosis is associated with progressive capillary rarefaction, we asked whether PDGF-CC neutralization in fibrosis might have detrimental anti-angiogenic effects leading to aggravated peritubular capillary loss. We analyzed capillary rarefaction in mice with and without PDGF-CC neutralization (using genetically deficient mice and neutralizing antibodies), in three different models of renal interstitial fibrosis, unilateral ureteral obstruction, unilateral ischemia-reperfusion, Col4a3-deficient (Alport) mice, and healthy animals. Independent of the effect of PDGF-CC neutralization on renal fibrosis, we found no difference in capillary rarefaction between PDGF-CC-neutralized mice and mice with intact PDGF-CC. We also found no differences in microvascular leakage (determined by extravasation of Evans Blue Dye) and in renal relative blood volume quantified using in vivo microcomputed tomography. PDGF-CC neutralization had no effects on renal microvasculature in healthy animals. Capillary endothelium did not express PDGF receptor-α, suggesting that potential PDGF-CC effects would have to be indirect. PDGF-CC neutralization or deficiency was not associated with preservation or accelerated loss of peritubular capillaries, suggesting no significant pro-angiogenic effects of PDGF-CC during renal fibrosis. From a clinical perspective, the profibrotic effects of PDGF-CC outweigh the pro-angiogenic effects and, thus, do not limit a potential therapeutic use of PDGF-CC inhibition in renal fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.