Abstract1. Plant diversity can increase nitrogen cycling and decrease soil-borne pests, which are feedback mechanisms influencing subsequent plant growth. The relative strength of these mechanisms is unclear, as is the influence of preceding plant quantity and quality. Here, we studied how plant diversity in space and time influences subsequent crop growth.2. During 2 years, we rotated two main crops (Avena sativa, Cichorium endivia) with four winter cover crop (WCC) species in monocultures and mixtures. We hypothesized that, relative to monocultures, WCC mixtures promote WCC biomass (quantity) and nitrogen concentration (quality), soil mineral nitrogen, soil organic matter, and reduce plant-feeding nematode abundance. Additionally, we predicted that preceding crops modified WCC legacies. By structural equation modelling (SEM), we tested the relative importance of WCC shoot biomass and nitrogen concentration on succeeding crop productivity directly and indirectly via nitrogen cycling and root-feeding nematode abundance.3. WCC shoot biomass, soil properties and succeeding Avena productivity were affected by first-season cropping, whereas subsequent Cichorium only responded to the WCC treatments. WCC mixtures' productivity and nitrogen concentration showed over-and under-yielding, depending on mixture composition. Soil nitrogen and nematode abundance did not display WCC mixture effects. Soil organic matter was lower than expected after Raphanus sativus + Vicia sativa mixture. Subsequent Avena productivity depended upon mixture composition, whereas final Cichorium productivity was unresponsive to WCC mixtures. SEM indicated that WCC legacy effects on subsequent Avena (R 2 = 0.52) and Cichorium (R 2 = 0.59) productivity were driven by WCC biomass and nitrogen concentration, although not by the quantified soil properties. Synthesis and applications.Through understanding plant-soil feedback, legacy effects of plant species and species mixtures can be employed for sustainable management of agro-ecosystems. Biomass and nitrogen concentration of plants returned to the soil stimulate subsequent plant productivity. Winter cover crop quantity and quality are both manipulable with mixtures. The specificity of spatialThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
1. In agriculture, winter cover crop (WCC) residues are incorporated into the soil to improve soil quality, as gradual litter decomposition can improve fertility.Decomposition rate is determined by litter quality, local soil abiotic and biotic properties. How these factors are interlinked and influenced by cropping history is, however, unclear. We grew WCC monocultures and mixtures in rotation with main cropsAvena sativa (oat) and Cichorium endivia (endive) and tested how crop rotation influences WCC litter quality, abiotic and biotic soil conditions, and litter decomposition rates. To disentangle WCC litter quality effects from WCC soil legacy effects on decomposition, we tested how rotation history influences decomposition of standard substrates and explored the underlying mechanisms. 3. In a common environment (e.g. winter fallow plots), WCC decomposition rate constants (k) correlated negatively with litter C, lignin and, surprisingly, N content, due to strong positive correlations among these traits. Plots with a history of fastdecomposing WCCs exhibited faster decomposition of their own litters as well as of the standard substrates filter paper and rooibos tea, as compared to winter fallow plots. 4. WCC treatments differentially affected soil microbial biomass, as well as soil organic matter and mineral nitrogen content. WCC-induced soil changes affected decomposition rates. Depending on the main crop rotation treatment, legacy effects were attributed to biomass input of WCCs and their litter quality or changes in microbial biomass. 5. Synthesis and applications. These results demonstrate that decomposition in cropping systems is influenced directly through crop residues, as well as through cropinduced changes in soil biotic properties. Rotation history influences decomposition, wherein productive winter cover crops (WCC) with low lignin content decompose fast and stimulate the turnover of both own and newly added residues via their knock-on effect on the soil microbial community. Thus, WCC have promise for sustainable carbon-and nutrient-cycling management through litter feedbacks.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Abstract. Plant responses to biotic and abiotic legacies left in soil by preceding plants is known as plant-soil feedback (PSF). PSF is an important mechanism to explain plant community dynamics and plant performance in natural and agricultural systems. However, most PSF studies are shortterm and small-scale due to practical constraints for fieldscale quantification of PSF effects, yet field experiments are warranted to assess actual PSF effects under less controlled conditions. Here we used unmanned aerial vehicle (UAV)-based optical sensors to test whether PSF effects on plant traits can be quantified remotely. We established a randomized agro-ecological field experiment in which six different cover crop species and species combinations from three different plant families (Poaceae, Fabaceae, Brassicaceae) were grown. The feedback effects on plant traits were tested in oat (Avena sativa) by quantifying the cover crop legacy effects on key plant traits: height, fresh biomass, nitrogen content, and leaf chlorophyll content. Prior to destructive sampling, hyperspectral data were acquired and used for calibration and independent validation of regression models to retrieve plant traits from optical data. Subsequently, for each trait the model with highest precision and accuracy was selected. We used the hyperspectral analyses to predict the directly measured plant height (RMSE = 5.12 cm, R 2 = 0.79), chlorophyll content (RMSE = 0.11 g m −2 , R 2 = 0.80), Ncontent (RMSE = 1.94 g m −2 , R 2 = 0.68), and fresh biomass (RMSE = 0.72 kg m −2 , R 2 = 0.56). Overall the PSF effects of the different cover crop treatments based on the remote sensing data matched the results based on in situ measurements. The average oat canopy was tallest and its leaf chlorophyll content highest in response to legacy of Vicia sativa monocultures (100 cm, 0.95 g m −2 , respectively) and in mixture with Raphanus sativus (100 cm, 1.09 g m −2 , respectively), while the lowest values (76 cm, 0.41 g m −2 , respectively) were found in response to legacy of Lolium perenne monoculture, and intermediate responses to the legacy of the other treatments. We show that PSF effects in the field occur and alter several important plant traits that can be sensed remotely and quantified in a non-destructive way using UAVbased optical sensors; these can be repeated over the growing season to increase temporal resolution. Remote sensing thereby offers great potential for studying PSF effects at field scale and relevant spatial-temporal resolutions which will facilitate the elucidation of the underlying mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.