2 2 5The Brassica genus contains a diverse range of oilseed and vegetable crops important for human nutrition 1 . Crops of particular agricultural importance include three diploid species, Brassica rapa (AA), Brassica nigra (BB) and Brassica oleracea (CC), and three allopolyploid species, B. napus (AACC), B. juncea (AABB) and Brassica carinata (BBCC). The evolutionary relationships among these Brassica species are described by what is called the 'triangle of U' model 2 , which proposes how the genomes of the three ancestral Brassica species, B. rapa, B. nigra and Brassica oleracae, combined to give rise to the allopolyploid species of this genus. B. juncea formed by hybridization between the diploid ancestors of B. rapa and B. nigra, followed by spontaneous chromosome doubling. Subsequent diversifying selection then gave rise to the vegetable-and oil-use subvarieties of B. juncea. These subvarieties include vegetable and oilseed mustard in China, oilseed crops in India, canola crops in Canada and Australia, and condiment crops in Europe and other regions 3 . Cultivation of B. juncea began in China about 6,000 to 7,000 years ago 4 , and flourished in India from 2,300 BC onward 5 .The genomes of B. rapa, B. oleracea and their allopolyploid offspring B. napus have been published recently [6][7][8] , and are often used to explain genome evolution in angiosperms [6][7][8] . The genomes of all Brassica species underwent a lineage-specific whole-genome triplication 6,7,9 , followed by diploidization that involved substantial genome reshuffling and gene losses 6,10-13 . In general, plant genomes are typically repetitive, polyploid and heterozygous, which complicates genome assembly 14 . The short read lengths of next-generation sequencing hinder assembly through complex regions, and fragmented draft and reference genomes usually lack skewed (G+C)-content sequences and repetitive intergenic sequences. Furthermore, in allopolyploid species, homoeolog expression dominance or bias, and specifically differential homoelog gene expression, has often been detected, for instance in Gossypium [15][16][17] Triticum 18,19 and Arabidopsis 20,21 , but the role of this phenomenon in selection for phenotypic traits remains mechanistically mysterious 22 .We reported here the draft genomes of an allopolyploid, B. juncea var. tumida, constructed by de novo assembly using shotgun reads, single-molecule long reads (PacBio sequencing), genomic (optical) mapping (BioNano sequencing) and genetic mapping, serving to resolve complicated allopolyploid genomes. The multiuse allopolyploid B. juncea genome offers a distinctive model to study the underlying genomic basis for selection in breeding improvement. These findings place this work into the broader context of plant breeding, highlighting The Brassica genus encompasses three diploid and three allopolyploid genomes, but a clear understanding of the evolution of agriculturally important traits via polyploidy is lacking. We assembled an allopolyploid Brassica juncea genome by shotgun and single-m...
SUMMARYRecessive resistances to plant viruses in the Potyvirus genus have been found to be based on mutations in the plant eukaryotic translation initiation factors, eIF4E and eIF4G or their isoforms. Here we report that natural, monogenic recessive resistance to the Potyvirus Turnip mosaic virus (TuMV) has been found in a number of mustard (Brassica juncea) accessions. Bulked segregant analysis and sequencing of resistant and susceptible plant lines indicated the resistance is controlled by a single recessive gene, recessive TuMV resistance 03 (retr03), an allele of the eukaryotic translation initiation factor 2B-beta (eIF2Bb). Silencing of eIF2Bb in a TuMV-susceptible mustard plant line and expression of eIF2Bb from a TuMV-susceptible line in a TuMV-resistant mustard plant line confirmed the new resistance mechanism. A functional copy of a specific allele of eIF2Bb is required for efficient TuMV infection. eIF2Bb represents a new class of virus resistance gene conferring resistance to any pathogen. eIF2B acts as a guanine nucleotide exchange factor (GEF) for its GTP-binding protein partner eIF2 via interaction with eIF2ÁGTP at an early step in translation initiation. Further genotyping indicated that a single non-synonymous substitution (A120G) in the N-terminal region of eIF2Bb was responsible for the TuMV resistance. A reproducible marker has been developed, facilitating marker-assisted selection for TuMV resistance in B. juncea. Our findings provide a new target for seeking natural resistance to potyviruses and new opportunities for the control of potyviruses using genome editing techniques targeted on eIF2Bb.
Eukaryotic translation initiation factors (eIFs) are essential protein complexes involved in the translation of mRNA into proteins. These initiation factors are generally used as targets in the control of plant RNA virus infections. In the present study, we identified a total 190 eIFs, clustered phylogenetically into 40 distinct subfamilies in the allopolyploid Brassica juncea. Extensive evolutionary duplications of the eIFs in B. juncea suggest their increased genetic diversity and wide adaptability. The induction of expressions in some of the eIFs after inoculation against Turnip mosaic virus (TuMV) provided candidate targets to be used in the control of viral infections. In addition, the expression profiles of eIFs under different temperatures suggested that the TuMV epidemic was temperature dependent. The eIFs expressions suggested that the systemic viral infections were more acute in plants grown between 20 °C and 28 °C. In addition, our results revealed that new subgroups of eIFs, eIF2β, eIF2α, eIF2Bβ, EF1A, and PABP could be represented as targets for antiviral strategies in B. juncea. In summary, our findings would be helpful in studying the complex mechanisms of eIF-mediated, temperature-dependent RNA virus control in B. juncea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.