We have developed a three-dimensional (3-D) computer-aided diagnosis scheme for automated detection of colonic polyps in computed tomography (CT) colonographic data sets, and assessed its performance based on colonoscopy as the gold standard. In this scheme, a thick region encompassing the entire colonic wall is extracted from an isotropic volume reconstructed from the CT images in CT colonography. Polyp candidates are detected by first computing of 3-D geometric features that characterize polyps, folds, and colonic walls at each voxel in the extracted colon, and then segmenting of connected components corresponding to suspicious regions by hysteresis thresholding based on these geometric features. We apply fuzzy clustering to these connected components to obtain the polyp candidates. False-positive (FP) detections are then reduced by computation of several 3-D volumetric features characterizing the internal structures of the polyp candidates, followed by the application of discriminant analysis to the feature space generated by these volumetric features. The locations of the polyps detected by our computerized method were compared to the gold standard of conventional colonoscopy. The performance was evaluated based on 43 clinical cases, including 12 polyps determined by colonoscopy. Our computerized scheme was shown to have the potential to detect polyps in CT colonography with a clinically acceptable high sensitivity and a low FP rate.
One of the limitations of the current computer-aided detection (CAD) of polyps in CT colonography (CTC) is a relatively large number of false-positive (FP) detections. Rectal tubes (RTs) are one of the typical sources of FPs because a portion of a RT, especially a portion of a bulbous tip, often exhibits a cap-like shape that closely mimics the appearance of a small polyp. Radiologists can easily recognize and dismiss RT-induced FPs; thus, they may lose their confidence in CAD as an effective tool if the CAD scheme generates such "obvious" FPs due to RTs consistently. In addition, RT-induced FPs may distract radiologists from less common true positives in the rectum. Therefore, removal RT-induced FPs as well as other types of FPs is desirable while maintaining a high sensitivity in the detection of polyps. We developed a three-dimensional (3D) massive-training artificial neural network (MTANN) for distinction between polyps and RTs in 3D CTC volumetric data. The 3D MTANN is a supervised volume-processing technique which is trained with input CTC volumes and the corresponding "teaching" volumes. The teaching volume for a polyp contains a 3D Gaussian distribution, and that for a RT contains zeros for enhancement of polyps and suppression of RTs, respectively. For distinction between polyps and nonpolyps including RTs, a 3D scoring method based on a 3D Gaussian weighting function is applied to the output of the trained 3D MTANN. Our database consisted of CTC examinations of 73 patients, scanned in both supine and prone positions (146 CTC data sets in total), with optical colonoscopy as a reference standard for the presence of polyps. Fifteen patients had 28 polyps, 15 of which were 5-9 mm and 13 were 10-25 mm in size. These CTC cases were subjected to our previously reported CAD scheme that included centerline-based segmentation of the colon, shape-based detection of polyps, and reduction of FPs by use of a Bayesian neural network based on geometric and texture features. Application of this CAD scheme yielded 96.4% (27/28) by-polyp sensitivity with 3.1 (224/73) FPs per patient, among which 20 FPs were caused by RTs. To eliminate the FPs due to RTs and possibly other normal structures, we trained a 3D MTANN with ten representative polyps and ten RTs, and applied the trained 3D MTANN to the above CAD true- and false-positive detections. In the output volumes of the 3D MTANN, polyps were represented by distributions of bright voxels, whereas RTs and other normal structures partly similar to RTs appeared as darker voxels, indicating the ability of the 3D MTANN to suppress RTs as well as other normal structures effectively. Application of the 3D MTANN to the CAD detections showed that the 3D MTANN eliminated all RT-induced 20 FPs, as well as 53 FPs due to other causes, without removal of any true positives. Overall, the 3D MTANN was able to reduce the FP rate of the CAD scheme from 3.1 to 2.1 FPs per patient (33% reduction), while the original by-polyp sensitivity of 96.4% was maintained.
One of the major challenges in computer-aided detection (CAD) of polyps in CT colonography (CTC) is the reduction of false-positive detections (FPs) without a concomitant reduction in sensitivity. A large number of FPs is likely to confound the radiologist's task of image interpretation, lower the radiologist's efficiency, and cause radiologists to lose their confidence in CAD as a useful tool. Major sources of FPs generated by CAD schemes include haustral folds, residual stool, rectal tubes, the ileocecal valve, and extra-colonic structures such as the small bowel and stomach. Our purpose in this study was to develop a method for the removal of various types of FPs in CAD of polyps while maintaining a high sensitivity. To achieve this, we developed a "mixture of expert" three-dimensional (3D) massive-training artificial neural networks (MTANNs) consisting of four 3D MTANNs that were designed to differentiate between polyps and four categories of FPs: (1) rectal tubes, (2) stool with bubbles, (3) colonic walls with haustral folds, and (4) solid stool. Each expert 3D MTANN was trained with examples from a specific non-polyp category along with typical polyps. The four expert 3D MTANNs were combined with a mixing artificial neural network (ANN) such that different types of FPs could be removed. Our database consisted of 146 CTC datasets obtained from 73 patients whose colons were prepared by standard pre-colonoscopy cleansing. Each patient was scanned in both supine and prone positions. Radiologists established the locations of polyps through the use of optical-colonoscopy reports. Fifteen patients had 28 polyps, 15 of which were 5-9 mm and 13 were 10-25 mm in size. The CTC cases were subjected to our previously reported CAD method consisting of centerline-based extraction of the colon, shape-based detection of polyp candidates, and a Bayesian-ANN-based classification of polyps. The original CAD method yielded 96.4% (27/28) by-polyp sensitivity with an average of 3.1 (224/73) FPs per patient. The mixture of expert 3D MTANNs removed 63% (142/224) of the FPs without the loss of any true positive; thus, the FP rate of our CAD scheme was improved to 1.1 (82/73) FPs per patient while the original sensitivity was maintained. By use of the mixture of expert 3D MTANNs, the specificity of a CAD scheme for detection of polyps in CTC was substantially improved while a high sensitivity was maintained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.