The use of machine learning (ML) has been increasing rapidly in the medical imaging field, including computer-aided diagnosis (CAD), radiomics, and medical image analysis. Recently, an ML area called deep learning emerged in the computer vision field and became very popular in many fields. It started from an event in late 2012, when a deep-learning approach based on a convolutional neural network (CNN) won an overwhelming victory in the best-known worldwide computer vision competition, ImageNet Classification. Since then, researchers in virtually all fields, including medical imaging, have started actively participating in the explosively growing field of deep learning. In this paper, the area of deep learning in medical imaging is overviewed, including (1) what was changed in machine learning before and after the introduction of deep learning, (2) what is the source of the power of deep learning, (3) two major deep-learning models: a massive-training artificial neural network (MTANN) and a convolutional neural network (CNN), (4) similarities and differences between the two models, and (5) their applications to medical imaging. This review shows that ML with feature input (or feature-based ML) was dominant before the introduction of deep learning, and that the major and essential difference between ML before and after deep learning is the learning of image data directly without object segmentation or feature extraction; thus, it is the source of the power of deep learning, although the depth of the model is an important attribute. The class of ML with image input (or image-based ML) including deep learning has a long history, but recently gained popularity due to the use of the new terminology, deep learning. There are two major models in this class of ML in medical imaging, MTANN and CNN, which have similarities as well as several differences. In our experience, MTANNs were substantially more efficient in their development, had a higher performance, and required a lesser number of training cases than did CNNs. "Deep learning", or ML with image input, in medical imaging is an explosively growing, promising field. It is expected that ML with image input will be the mainstream area in the field of medical imaging in the next few decades.
Baseline metabolic tumor burdens at the level of whole-body tumor, primary tumor, nodal metastasis, and distant metastasis as measured with MTV and TLG on FDG PET are prognostic measures independent of clinical stage with low inter-observer variability and may be used to further stratify nonsurgical patients with NSCLC. This study also suggests MTV and TLG are better prognostic measures than SUV(max) and SUV(mean). These results will need to be validated in larger cohorts in a prospective study.
In this study, we investigated a pattern-recognition technique based on an artificial neural network (ANN), which is called a massive training artificial neural network (MTANN), for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography (CT) images. The MTANN consists of a modified multilayer ANN, which is capable of operating on image data directly. The MTANN is trained by use of a large number of subregions extracted from input images together with the teacher images containing the distribution for the "likelihood of being a nodule." The output image is obtained by scanning an input image with the MTANN. The distinction between a nodule and a non-nodule is made by use of a score which is defined from the output image of the trained MTANN. In order to eliminate various types of non-nodules, we extended the capability of a single MTANN, and developed a multiple MTANN (Multi-MTANN). The Multi-MTANN consists of plural MTANNs that are arranged in parallel. Each MTANN is trained by using the same nodules, but with a different type of non-nodule. Each MTANN acts as an expert for a specific type of non-nodule, e.g., five different MTANNs were trained to distinguish nodules from various-sized vessels; four other MTANNs were applied to eliminate some other opacities. The outputs of the MTANNs were combined by using the logical AND operation such that each of the trained MTANNs eliminated none of the nodules, but removed the specific type of non-nodule with which the MTANN was trained, and thus removed various types of non-nodules. The Multi-MTANN consisting of nine MTANNs was trained with 10 typical nodules and 10 non-nodules representing each of nine different non-nodule types (90 training non-nodules overall) in a training set. The trained Multi-MTANN was applied to the reduction of false positives reported by our current computerized scheme for lung nodule detection based on a database of 63 low-dose CT scans (1765 sections), which contained 71 confirmed nodules including 66 biopsy-confirmed primary cancers, from a lung cancer screening program. The Multi-MTANN was applied to 58 true positives (nodules from 54 patients) and 1726 false positives (non-nodules) reported by our current scheme in a validation test; these were different from the training set. The results indicated that 83% (1424/1726) of non-nodules were removed with a reduction of one true positive (nodule), i.e., a classification sensitivity of 98.3% (57 of 58 nodules). By using the Multi-MTANN, the false-positive rate of our current scheme was improved from 0.98 to 0.18 false positives per section (from 27.4 to 4.8 per patient) at an overall sensitivity of 80.3% (57/71).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.