This article presents a study on the process of how passengers arrive at lift lobbies to travel to their destinations. Earlier studies suggest that passengers arrive at the lift lobbies individually with exponentially distributed inter-arrival times, that is, according to a Poisson process. This study was carried out in a multi-storey office building. The data was collected using a questionnaire, digital video recordings and the lift monitoring system. The results show that, in the studied building, passengers arrive in batches whose size varies with the time of day and the floor utilization. In addition, the batch arrivals follow a time-inhomogeneous Poisson process with piecewise constant arrival rates. Practical applications: This article contributes to the basic understanding of passenger behaviour, and how people move around in buildings and arrive at the lift lobbies. It is proposed that the model for the passenger arrival process should take into account that passengers do not always arrive individually but also in batches. The passenger arrival process affects the design of elevators. It will also affect the passenger generation in building traffic simulations.
We shall introduce the principles of optimal routing of double-deck elevators. The elevator routing problem is formulated as an integer programming problem and it is solved using a genetic algorithm in a real-time system. The optimal routes of double-deck elevators have not been considered earlier in the literature. The simulation results are analyzed with discussion about the significance of the method.
This dissertation studies people flow in buildings, especially the process of how passengers arrive at elevator lobbies, estimation of elevator passenger traffic, and human behaviour and decision making in evacuations. The arrival process is studied by taking into account, for the first time, that passengers do not always arrive and use elevators individually but rather in batches. The results suggest that the common assumption that individual arrivals follow a Poisson distribution may not hold when the proportion of batch arrivals is large.To estimate the elevator passenger traffic in a building, new mathematical models and algorithms are developed. The new methods are based on mathematical optimization, namely, linear programming, integer least squares and constraint programming. The results from numerical experiments show that the new approaches satisfy real-time elevator control requirements. In addition, randomized algorithms result in better quality passenger traffic statistics than traditional deterministic algorithms. The dissertation presents also an experimental evacuation study. The results show that people may not be able to select the fastest exit route and that cooperation may slow down the evacuation.The new estimation models and algorithms presented in this dissertation enable better elevator control and some of them are already being implemented by KONE Corporation. The results also give new insights into the process of how passengers arrive at the elevator lobbies and use elevators and into human behaviour in evacuation situations, which affect elevator and building safety planning. Tiivistelmä Tässä väitöskirjassa tutkitaan rakennusten henkilöliikennettä, erityisesti henkilöiden saapumisprosessia hissiauloihin, hisseillä tapahtuvan henkilöliikenteen estimointia sekä henkilöiden käyttäytymistä ja päätöksentekoa rakennuksen evakuoinnissa. Saapumisprosessia tutkitaan ottaen ensimmäistä kertaa huomioon, että henkilöt eivät aina saavu ja käytä hissiä yksin vaan isommissa joukoissa. Tulokset osoittavat, että yleinen olettamus yksittäisten saapumisten Poisson jakautuneisuudesta ei välttämättä päde, kun joukkosaapumisten osuus on suuri.Rakennuksen henkilöliikenteen estimoimiseksi väitöskirjassa kehitetään matemaattisia malleja ja algoritmeja, jotka perustuvat lineaariseen optimointiin, pienimmän neliösumman kokonaislukuoptimointiin ja rajoiteoptimointiin. Numeeristen testien tulokset osoittavat, että menetelmät toteuttavat todellisen hissiohjauksen reaaliaikavaatimukset. Lisäksi satunnaistetut algoritmit tuottavat laadultaan parempia henkilöliikennetilastoja kuin perinteiset deterministiset algoritmit. Väitöskirjassa esitetään myös kokeellinen evakuointitutkimus, jonka tulokset osoittavat, että ihmiset eivät välttämättä kykene valitsemaan nopeinta poistumisreittiä ja että evakuoitavien pyrkimys yhteistyöhön voi hidastaa poistumista.Väitöskirjassa kehitetyt henkilöliikenteen estimointimallit ja -algoritmit mahdollistavat hissien tehokkaamman ohjaamisen ja osa menetelmistä on jo tuotannossa KONE...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.