Abstract. Over 3 weeks in May and June 2018, an exceptionally large number of thunderstorms hit vast parts of western and central Europe, causing precipitation accumulations of up to 80 mm within 1 h and several flash floods. This study examines the conditions and processes that made this particular thunderstorm episode exceptional, with a particular focus on the interaction of processes across scales. During the episode, a blocking situation persisted over northern Europe. Initially, the southwesterly flow on the western flank of the blocking anticyclone induced the advection of warm, moist, and unstably stratified air masses. Due to the low-pressure gradient associated with the blocking anticyclone, these air masses were trapped in western and central Europe, remained almost stationary, and prevented a significant air mass exchange. In addition, the weak geopotential height gradients led to predominantly weak flow conditions in the mid-troposphere and thus to low vertical wind shear that prevented thunderstorms from developing into severe organized systems. Due to a weak propagation speed in combination with high rain rates, several thunderstorms were able to accumulate enormous amounts of precipitation that affected local-scale areas and triggered several torrential flash floods. Atmospheric blocking also increased the upper-level cut-off low frequency on its upstream regions, which was up to 10 times higher than the climatological mean. Together with filaments of positive potential vorticity (PV), the cut-offs provided the mesoscale setting for the development of a large number of thunderstorms. During the 22 d study period, more than 50 % of lightning strikes can be linked to a nearby cut-off low or PV filament. The exceptionally persistent low stability over 3 weeks combined with a weak wind speed in the mid-troposphere has not been observed during the past 30 years.
As present weather forecast codes and increasingly many atmospheric climate models resolve at least part of the mesoscale flow, and hence also internal gravity waves (GWs), it is natural to ask whether even in such configurations subgrid-scale GWs might impact the resolved flow and how their effect could be taken into account. This motivates a theoretical and numerical investigation of the interactions between unresolved submesoscale and resolved mesoscale GWs, using Boussinesq dynamics for simplicity. By scaling arguments, first a subset of submesoscale GWs that can indeed influence the dynamics of mesoscale GWs is identified. Therein, hydrostatic GWs with wavelengths corresponding to the largest unresolved scales of present-day limited-area weather forecast models are an interesting example. A large-amplitude WKB theory, allowing for a mesoscale unbalanced flow, is then formulated, based on multiscale asymptotic analysis utilizing a proper scale-separation parameter. Purely vertical propagation of submesoscale GWs is found to be most important, implying inter alia that the resolved flow is only affected by the vertical flux convergence of submesoscale horizontal momentum at leading order. In turn, submesoscale GWs are refracted by mesoscale vertical wind shear while conserving their wave-action density. An efficient numerical implementation of the theory uses a phase-space ray tracer, thus handling the frequent appearance of caustics. The WKB approach and its numerical implementation are validated successfully against submesoscale-resolving simulations of the resonant radiation of mesoscale inertia GWs by a horizontally as well as vertically confined submesoscale GW packet.
Figure 2. Overview map of central European countries and the federal states of Germany (in grey). In addition, relevant orographic features are displayed. The map is supplemented by ESWD reports (quality control level QC0+ and higher; 336 in the domain) from 10 to 12 June 2019 for hail (), heavy precipitation (), convective wind gusts () and tornadoes (). The colouring indicates the respective report day.
The Neckar Valley and the Swabian Jura in southwest Germany comprise a hotspot for severe convective storms, causing tens of millions of euros in damage each year. Possible reasons for the high frequency of thunderstorms and the associated event chain across compartments were investigated in detail during the hydro-meteorological field campaign Swabian MOSES carried out between May and September 2021. Researchers from various disciplines established more than 25 temporary ground-based stations equipped with state-of-the-art in situ and remote sensing observation systems, such as lidars, dual-polarization X- and C-band Doppler weather radars, radiosondes including stratospheric balloons, an aerosol cloud chamber, masts to measure vertical fluxes, autosamplers for water probes in rivers, and networks of disdrometers, soil moisture, and hail sensors. These fixed-site observations were supplemented by mobile observation systems, such as a research aircraft with scanning Doppler lidar, a cosmic ray neutron sensing rover, and a storm chasing team launching swarmsondes in the vicinity of hailstorms. Seven Intensive Observation Periods (IOPs) were conducted on a total of 21 operating days. An exceptionally high number of convective events, including both unorganized and organized thunderstorms such as multicells or supercells, occurred during the study period. This paper gives an overview of the Swabian MOSES (Modular Observation Solutions for Earth Systems) field campaign, briefly describes the observation strategy, and presents observational highlights for two IOPs.
<p>Trotz signifikanter Verbesserungen in den vergangenen Jahren sind die Unsicherheiten insbesondere bei der Vorhersage von Gewittern und ihren Begleiterscheinungen wie Starkregen, Hagel oder Sturmb&#246;en selbst mit konvektionsaufl&#246;senden Wettervorhersagemodellen der Wetterdienste noch immer zu gro&#223;, um daraus verl&#228;ssliche und m&#246;glichst punktgenaue Warnungen abzuleiten. F&#252;r kurzfristige Pr&#228;ventionsma&#223;nahmen bis hin zur Evakuierung von Menschen beispielsweise bei Veranstaltungen im Freien sind pr&#228;zise Vorhersagen auf kurzen Zeitskalen jedoch unerl&#228;sslich. Mit den Verfahren der Echtzeit-Vorhersage (Nowcasting) lassen sich Gewitterereignisse und ihre wesentlichen Merkmale identifizieren und aus der Kenntnis der Historie f&#252;r Zeitskalen von einigen Minuten bis zu wenigen Stunden extrapolieren beziehungsweise vorhersagen. Die &#252;blicherweise kurze Lebensdauer konvektiver Ereignisse und deren schnelle Entwicklung w&#228;hrend instabiler Wetterlagen f&#252;hren jedoch oftmals zu einer erheblichen Diskrepanz zwischen den Nowcasting-Vorhersagen und den beobachteten Wetterbedingungen. Hier besteht folglich ein gro&#223;es Verbesserungspotential.</p> <p>Pr&#228;sentiert wird eine Analyse der Lebenszyklen von konvektiven Zellen in Deutschland, welche die vorherrschenden atmosph&#228;rischen Bedingungen miteinbezieht. Au&#223;erdem werden verschiedene statistische Modelle zur Absch&#228;tzung der Lebensdauer und Gr&#246;&#223;e konvektiver Zellen im Sinne des Nowcastings vorgestellt. Ein Vergleich dieser Modelle erm&#246;glicht es zu beurteilen, welche Methode am besten geeignet ist, Nowcasting-Verfahren f&#252;r Warnmanagementsysteme von Wetterdiensten zu verbessern.</p> <p>Unter Verwendung von Daten des radarbasierten Zellverfolgungsalgorithmus KONRAD des Deutschen Wetterdienstes (DWD) wurden objektbasierte Lebenszyklen von isolierter Konvektion (Einzel- und Superzellen) f&#252;r die Sommerhalbjahre 2011-2016 analysiert. Zus&#228;tzlich wurde eine Vielzahl konvektionsrelevanter atmosph&#228;rischer Variablen (z.B. Deep Layer Shear, CAPE, Lifted Index), die mittels hochaufl&#246;sender COSMO-EU Assimilationsanalysen berechnet wurden, mit den Lebenszyklen kombiniert. Auf der Grundlage dieses kombinierten Datensatzes werden statistische Zusammenh&#228;nge zwischen verschiedenen Zellattributen und atmosph&#228;rischen Variablen diskutiert. Wie die Analysen zeigen, sind insbesondere Ma&#223;e der vertikalen Windscherung aufgrund ihres Einflusses auf die Organisationsform der Zellen geeignet, zwischen solchen mit kurzer und langer Lebensdauer zu unterscheiden. Erh&#246;hte thermische Instabilit&#228;t ist mit einem schnelleren anf&#228;nglichen Zellwachstum verbunden, was eine gr&#246;&#223;ere horizontale Zellexpansion (Zellfl&#228;che) w&#228;hrend des Lebenszyklus und indirekt eine l&#228;ngere Lebensdauer beg&#252;nstigt.</p> <p>Drei verschiedene multivariate Methoden (logistische Regression, <em>Random Forest</em>, nichtlinearer polynomialer Ansatz) wurden als statistische Modelle zur Sch&#228;tzung der Lebensdauer und der maximalen Zellfl&#228;che konvektiver Zellen unter Verwendung eines Ensemble-Ansatzes untersucht ("&#220;berwachtes Maschinelles Lernen"). Die Vorhersageg&#252;te der Modelle wurde mittels probabilistischer Evaluation bewertet und die Bedeutung der anf&#228;nglichen Zellentwicklung und der atmosph&#228;rischen Variablen f&#252;r den weiteren Verlauf des Lebenszyklus quantifiziert. Es werden Potentiale und Grenzen der drei Methoden aufgezeigt, die verdeutlichen, dass die Wahl einer geeigneten Methode von dem genauen Nowcasting-Problem bzw. der Anforderung abh&#228;ngt. Die Untersuchungen legen nahe, dass die maximale Zellfl&#228;che konvektiver Zellen besser abgesch&#228;tzt werden kann als ihre Lebensdauer. Atmosph&#228;rische Variablen, die den dynamischen und thermodynamischen Zustand der Atmosph&#228;re charakterisieren, sind zu Beginn der Zellentwicklung besonders wichtig f&#252;r die Absch&#228;tzung der zuk&#252;nftigen Entwicklung der Zellattribute, w&#228;hrend mit zunehmendem Zellalter die Zellhistorie immer relevanter wird.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.