Treating metastatic osteosarcoma (OS) remains a challenge in oncology. Current treatment strategies target the primary tumour rather than metastases and have a limited efficacy in the treatment of metastatic disease. Metastatic cells have specific features that render them less sensitive to therapy and targeting these features might enhance the efficacy of current treatment. A detailed study of the biological characteristics and behaviour of metastatic OS cells may provide a rational basis for innovative treatment strategies. The aim of this review is to give an overview of the biological changes in metastatic OS cells and the preclinical and clinical efforts targeting the different steps in OS metastases and how these contribute to designing a metastasis directed treatment for OS.
BackgroundThe use of radiotherapy in osteosarcoma (OS) is controversial due to its radioresistance. OS patients currently treated with radiotherapy generally are inoperable, have painful skeletal metastases, refuse surgery or have undergone an intralesional resection of the primary tumor. After irradiation-induced DNA damage, OS cells sustain a prolonged G2 cell cycle checkpoint arrest allowing DNA repair and evasion of cell death. Inhibition of WEE1 kinase leads to abrogation of the G2 arrest and could sensitize OS cells to irradiation induced cell death.MethodsWEE1 expression in OS was investigated by gene-expression data analysis and immunohistochemistry of tumor samples. WEE1 expression in OS cell lines and human osteoblasts was investigated by Western blot. The effect of WEE1 inhibition on the radiosensitivity of OS cells was assessed by cell viability and caspase activation analyses after combination treatment. The presence of DNA damage was visualized using immunofluorescence microscopy. Cell cycle effects were investigated by flow cytometry and WEE1 kinase regulation was analyzed by Western blot.ResultsWEE1 expression is found in the majority of tested OS tissue samples. Small molecule drug PD0166285 inhibits WEE1 kinase activity. In the presence of WEE1-inhibitor, irradiated cells fail to repair their damaged DNA, and show higher levels of caspase activation. The inhibition of WEE1 effectively abrogates the irradiation-induced G2 arrest in OS cells, forcing the cells into premature, catastrophic mitosis, thus enhancing cell death after irradiation treatment.ConclusionWe show that PD0166285, a small molecule WEE1 kinase inhibitor, can abrogate the G2 checkpoint in OS cells, pushing them into mitotic catastrophe and thus sensitizing OS cells to irradiation-induced cell death. This suggests that WEE1 inhibition may be a promising strategy to enhance the radiotherapy effect in patients with OS.
Background:Osteosarcoma (OS) is the most common bone tumour in children and adolescents. Despite aggressive therapy regimens, treatment outcomes are unsatisfactory. Targeted delivery of drugs can provide higher effective doses at the site of the tumour, ultimately improving the efficacy of existing therapy. Identification of suitable receptors for drug targeting is an essential step in the design of targeted therapy for OS.Methods:We conducted a comparative analysis of the surface proteome of human OS cells and osteoblasts using cell surface biotinylation combined with nano-liquid chromatography – tandem mass spectrometry-based proteomics to identify surface proteins specifically upregulated on OS cells. This approach generated an extensive data set from which we selected a candidate to study for its suitability as receptor for targeted treatment delivery to OS. First, surface expression of the ephrin type-A receptor 2 (EPHA2) receptor was confirmed using FACS analysis. Ephrin type-A receptor 2 expression in human tumour tissue was tested using immunohistochemistry. Receptor targeting and internalisation studies were conducted to assess intracellular uptake of targeted modalities via EPHA2. Finally, tissue micro arrays containing cores of human OS tissue were stained using immunohistochemistry and EPHA2 staining was correlated to clinical outcome measures.Results:Using mass spectrometry, a total of 2841 proteins were identified of which 156 were surface proteins significantly upregulated on OS cells compared with human primary osteoblasts. Ephrin type-A receptor 2 was highly upregulated and the most abundant surface protein on OS cells. In addition, EPHA2 was expressed in a vast majority of human OS samples. Ephrin type-A receptor 2 effectively mediates internalisation of targeted adenoviral vectors into OS cells. Patients with EPHA2-positive tumours showed a trend toward inferior overall survival.Conclusion:The results presented here suggest that the EPHA2 receptor can be considered an attractive candidate receptor for targeted delivery of therapeutics to OS.
Osteosarcoma (OS) is the most common primary malignant bone tumour in children and adolescents. Despite aggressive therapy, survival outcomes remain unsatisfactory, especially for patients with metastatic disease or patients with a poor chemotherapy response. Chemoresistance contributes to treatment failure. To increase the efficacy of conventional chemotherapy, essential survival pathways should be targeted concomitantly. Here, we performed a loss-of-function siRNA screen of the human kinome in SaOS-2 cells to identify critical survival kinases after doxorubicin treatment. Gene silencing of JNK-interacting-protein-1 (JIP1) elicited the most potent sensitisation to doxorubicin. This candidate was further explored as potential target for chemosensitisation in OS. A panel of OS cell lines and human primary osteoblasts was examined for sensitisation to doxorubicin using small molecule JIP1-inhibitor BI-78D3. JIP1 expression and JIP1-inhibitor effects on JNK-signalling were investigated by Western blot analysis. JIP1 expression in human OS tumours was assessed by immunohistochemistry on tissue micro arrays. BI-78D3 blocked JNK-signalling and sensitised three out of four tested OS cell lines, but not healthy osteoblasts, to treatment with doxorubicin. Combination treatment increased the induction of apoptosis. JIP1 was found to be expressed in two-thirds of human primary OS tissue samples. Patients with JIP1 positive tumours showed a trend to inferior overall survival. Collectively, JIP1 appears a clinically relevant novel target in OS to enhance the efficacy of doxorubicin treatment by means of RNA interference or pharmacological inhibition.
This report describes the radiological and histological findings of a small cell osteosarcoma of a toe phalanx in a 38 year old man. This man presented with pain, swelling and redness of the left third toe. Medical history revealed an osteomyelitis of this toe eight years prior. Based on clinical findings and medical history the lesion was diagnosed as an osteomyelitis. However, peroperatively the lesion had a malignant aspect. Histological examination revealed a small cell osteosarcoma of the proximal phalanx.Osteosarcoma of the foot and especially of the tubular bones is rare. Moreover small cell osteosarcoma is a rare subtype of osteosarcoma. This case demonstrates that medical history and clinical examination can be misleading. In patients with apparent bone destruction, a malignancy must always be excluded prior to treatment. It emphasises the care that should be taken in the process of formulating a diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.