Hydrated electrons were prepared by multi-photon ionization of neat water with 266 nm light. Using femtosecond pump-probe spectroscopy the dynamics of geminate recombination of the solvated electrons were studied over a wide temperature (296 K ≤T≤ 660 K) and density (0.18 g cm(-3)≤ρ≤ 1.00 g cm(-3)) range extending from the liquid well into the supercritical phase of water. The probability that hydrated electrons escape an initial recombination was found to strongly decrease with increasing temperature. In contrast, the isothermal density-dependence of this survival probability above the critical temperature was surprisingly weak. The peculiar dependence of the initial electron annihilation process on the thermodynamic state variables is discussed in terms of the Onsager model for initial recombination of ion pairs and an effective shielding of the electrostatic interactions of the recombining partners. A finite escape probability for a dielectric constant approaching unity can be interpreted by the existence of a minor fraction of highly mobile electrons created via autoionization.
The first-ever femtosecond pump-probe study is reported on solvated electrons that were generated by multiphoton ionization of neat fluid ammonia. The initial ultrafast ionization was carried out with 266 nm laser pulses and was found to require two photons. The solvated electron was detected with a femtosecond probe pulse that was resonant with its characteristic near-infrared absorption band around 1.7 μm. Furthermore, the geminate recombination dynamics of the solvated electron were studied over wide ranges of temperature (227 K ≤ T ≤ 489 K) and density (0.17 g cm(-3) ≤ ρ ≤ 0.71 g cm(-3)), thereby covering the liquid and the supercritical phase of the solvent. The electron recombines in a first step with ammonium cations originating from the initial two-photon ionization thereby forming transient ion-pairs (e(am)(-)·NH(4)(+)), which subsequently react in a second step with amidogen radicals to reform neutral ammonia. The escape probability, i.e., the fraction of solvated electrons that can avoid the geminate annihilation, was found to be in quantitative agreement with the classical Onsager theory for the initial recombination of ions. When taking the sequential nature of the ion-pair-mediated recombination mechanism explicitly into account, the Onsager model provides a mean thermalization distance of 6.6 nm for the solvated electron, which strongly suggests that the ionization mechanism involves the conduction band of the fluid.
We recently reported first femtosecond pump–probe experiments on the geminate recombination dynamics of solvated electrons in fluid ammonia (Urbanek et al., J. Phys. Chem. B 2012, 116, 2223–2233). The electrons were generated through a vertical two-photon ionization at a total energy of 9.3 eV. Here, we present a full Monte Carlo analysis of the time-resolved data to determine the solvated electron’s thermalization distance from the ionization hole, NH(3)(+). The simulations are compared with the experiment over wide thermodynamic conditions to obtain insight into the dependence of the vertical ionization mechanism on the electronic properties of the solvent network. The simulations reveal that the average thermalization distance,
Femtosecond multiphoton ionization experiments have been conducted on ammonia over a wide range of temperature (225 K ≤ T ≤ 490 K) and density (0.18 g/cm(3) ≤ ρ ≤ 0.7 g/cm(3)), thereby covering the liquid and supercritical phases. The experiments were carried out with excitation pulses having a wavelength of 400 nm, and the ionization was found to involve two photons. Therefore, the total ionization energy in this study corresponds to 6.2 eV, which is roughly 2 eV below the valence-to-conduction band gap of the fluid. The ionization generates solvated electrons, which have been detected through their characteristic near-infrared resonance, and must be facilitated through a coupling to nuclear degrees of freedom of the liquid. The recombination of the solvated electron with the geminate fragments was found to obey predominantly single-exponential kinetics with time constants between 500 fs and 1 ps. Only a very minor fraction of the photogenerated electrons is able to escape from the geminate recombination. The results indicate that the majority of electrons are injected into suitable trapping sites located between the first and second solvation shells of the initially ionized ammonia molecules. Such configurations can be considered as instantly reactive and facilitate an ultrafast barrierless electron annihilation. This process is found to exhibit a pronounced kinetic isotope effect, which indicates that the electronic decay is accompanied by the transfer of a proton. The sequence of ionization and recombination events can therefore be described appropriately as a proton-coupled electron transfer (PCET) followed by a proton-coupled back electron transfer (PCBET).
Abstract. Liquid and supercritical ammonia (NH 3 ) is photo-ionized at an energy of 9.3 eV with 100-fs duration pulses at a wavelength of 266 nm. The ionization involves two photons and generates fully solvated electrons via the conduction band of the solvent within the time resolution of the experiment. The dynamics of their ensuing geminate recombination is followed in real time with femtosecond near-infrared (IR) probe pulses. The recombination mechanism can be understood as an ion-pair mediated reaction. The electron survival probability is found to be in quantitative agreement with the classical Onsager theory for the initial recombination of ions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.