Nitramines and related N-nitro compounds have attracted significant attention owing to their use in rocket fuel and as explosives. The charge density of 1-nitroindoline was determined experimentally and from theoretical calculations. Electron-density refinements were performed using the multipolar atom formalism. In order to design the ideal restraint strategy for the charge-density parameters, R-free analyses were performed involving a series of comprehensive refinements. Different weights were applied to the charge-density restraints, namely the similarity between chemically equivalent atoms and local symmetry. Additionally, isotropic thermal motion and an anisotropic model calculated by rigid-body analysis were tested on H atoms. The restraint weights which resulted in the lowest values of the averaged R-free factors and the anisotropic H-atom model were considered to yield the best charge density and were used in the final refinement. The derived experimental charge density along with intra- and intermolecular interactions was analysed and compared with theoretical calculations, notably with respect to the symmetry of multipole parameters. A comparison of different refinements suggests that the appropriate weighting scheme applied to charge-density restraints can reduce the observed artefacts. The topological bond orders of the molecule were calculated.
Key indicatorsSingle-crystal X-ray study T = 85 K Mean (C-C) = 0.002 Å R factor = 0.034 wR factor = 0.088 Data-to-parameter ratio = 10.9For details of how these key indicators were automatically derived from the article, see
In the title compound, C(8)H(8)N(2)O(2), the nitramino group is planar and only slightly twisted with respect to the indoline rings. The bridgehead N--C bond is slightly shorter than in typical secondary aromatic nitramines. The N--N bond has some double-bond character. The molecules are connected by weak C--H...O hydrogen bonds, forming chains parallel to the z direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.