BackgroundRespiratory epithelium integrity impairment caused by intensive exercise may lead to exercise-induced bronchoconstriction. Clara cell protein (CC16) has anti-inflammatory properties and its serum level reflects changes in epithelium integrity and airway inflammation. This study aimed to investigate serum CC16 in elite athletes and to seek associations of CC16 with asthma or allergy, respiratory tract infections (RTIs) and immune response to respiratory pathogens.MethodsThe study was performed in 203 Olympic athletes. Control groups comprised 53 healthy subjects and 49 mild allergic asthmatics. Serum levels of CC16 and IgG against respiratory viruses and Mycoplasma pneumoniae were assessed. Allergy questionnaire for athletes was used to determine symptoms and exercise pattern. Current versions of ARIA and GINA guidelines were used when diagnosing allergic rhinitis and asthma, respectively.ResultsAsthma was diagnosed in 13.3% athletes, of whom 55.6% had concomitant allergic rhinitis. Allergic rhinitis without asthma was diagnosed in 14.8% of athletes. Mean CC16 concentration was significantly lower in athletes versus healthy controls and mild asthmatics. Athletes reporting frequent RTIs had significantly lower serum CC16 and the risk of frequent RTIs was more than 2-fold higher in athletes with low serum CC16 (defined as equal to or less than 4.99 ng/ml). Athletes had significantly higher anti-adenovirus IgG than healthy controls while only non-atopic athletes had anti-parainfluenza virus IgG significantly lower than controls. In all athletes weak correlation of serum CC16 and anti-parainfluenza virus IgG was present (R = 0.20, p < 0.01). In atopic athletes a weak positive correlations of CC16 with IgG specific for respiratory syncytial virus (R = 0.29, p = 0.009), parainfluenza virus (R = 0.31, p = 0.01) and adenovirus (R = 0.27, p = 0.02) were seen as well.ConclusionsRegular high-load exercise is associated with decrease in serum CC16 levels. Athletes with decreased CC16 are more susceptible to respiratory infections. Atopy may be an additional factor modifying susceptibility to infections in subjects performing regular high-load exercise.
High prevalence of exercise-induced respiratory symptoms among top athletes is not reflected by asthma diagnosis. As it was expected, our data confirm that - in diagnosis of EIA - lung function testing alone is not useful, whereas reversibility tests are of limited value.
IntroductionRegular training modulates airway inflammation and modifies susceptibility to respiratory infections. The impact of exercise and ambient conditions on airway hyperreactivity and innate immunity has not been well studied. We aimed to assess exercise-related symptoms, lung function, airway hyperresponsiveness and innate immunity proteins in relation to meteorological conditions and exercise load in competitive athletes.Material and methodsThirty-six speed skaters were assessed during winter (WTP) and summer (STP) periods. The control group comprised 22 non-exercising subjects. An allergy questionnaire for athletes (AQUA) and IPAQ (International Physical Activity Questionnaire) were used to assess symptoms and exercise. Meteorological parameters were acquired from World Meteorological Organization resources. Serum innate immunity proteins were measured by ELISA.ResultsExercise-associated respiratory symptoms were reported by 79.4% of skaters. Despite similar exercise load and lung parameters during both periods, positive methacholine challenge was more frequent during winter (p = 0.04). Heat shock protein HSPA1 and IL-1RA were significantly decreased during STP compared to WTP and controls. During WTP, IL-1RA was elevated in skaters reporting exercise-induced symptoms (p = 0.007). sCD14 was elevated in athletes versus controls in both periods (p < 0.05). HSPA1 was significantly higher in WTP compared to STP irrespective of presence of respiratory tract infections (RTIs). IL-1RA in WTP was elevated versus STP (p = 0.004) only in RTI-negative athletes. Serum IL-1RA negatively correlated with most meteorological parameters during WTP.ConclusionsAmbient training conditions, but not training load, influence bronchial hyperreactivity and the innate immune response in competitive athletes assessed during winter. The protective effect of regular exercise against respiratory infections is associated with a shift in serum innate immunity proteins.
Objective: The aim of the study was to evaluate the safety and tolerance of influenza vaccines for the northern and southern hemispheres in Polish elite athletes participating in the Rio 2016 Olympics. Design: Prospective, observational, cohort study. Setting: Institutional level. Participants: Ninety-seven athletes vaccinated only with the northern hemisphere vaccine; 98 athletes received the southern hemisphere vaccine alone, whereas 39 athletes were vaccinated with both vaccines. Interventions: The athletes were vaccinated with a trivalent, inactivated influenza vaccine recommended for the northern hemisphere 2015/2016 and then with the vaccine recommended for the southern hemisphere 2016. Athletes kept a diary of adverse events and effects (if any) on training for 6 days after vaccination. Main Outcome Measures: The percentage of general and local adverse events, number of lost or modified training sessions. Results: Significantly more local adverse events (pain and redness) were found in the group immunized with the vaccine for the northern hemisphere. There were no differences in the frequency of general adverse events and influence on training between groups. Of total 273 athletes who had 1911 training days during 6 days after vaccination, 6 athletes (2.2%) lost 13 training days (0.7%) and 16 athletes (5.9%) had to modify 34 (1.7%) training days within first 2 days after vaccination. Conclusions: Athletes tolerated influenza immunization well. If they are going to travel to the other hemisphere during the influenza season, the use of the second influenza vaccine should be advised. Athletes should anticipate modification of trainings for 2 days after vaccination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.