Synthesis of oligocarbonate diols from a "green monomer"-dimethyl carbonate-as soft segments for poly(urethane-urea) elastomers Summary-Results from the investigation of a two-step synthesis of oligocarbonate diols from a "green monomer"-dimethyl carbonate (DMC) are presented and discussed. In the first step 1,6-hexanediol or 1,10-decanediol was reacted with DMC to obtain bis(methylcarbonate)hexamethylene (1h) or bis(methylcarbonate)decamethylene (1d), respectively which were further reacted in the next step with appropriate diol at a intended molar ratio to obtain the final product. The solvent-1,4-dioxane-served as a suppressant of the evaporation of both the diol and low molecular weight oligomers, while facilitating the removal of residual amount of methanol and full conversion of methylcarbonate groups. This method allows for the synthesis of oligocarbonate diols without ether linkages containing exclusively terminal hydroxyl groups and of desired molecular weights. It was shown that such oligomerols can be applied for the preparation of poly(urethane-urea) elastomers. The obtained elastomers based on oligocarbonate diols of molecular weights ranging from 1700 to 2700 exhibited very good mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.