The increasing challenges of agricultural processes and the growing demand for food globally are driving the industrial agriculture sector to adopt the concept of ‘smart farming’. Smart farming systems, with their real-time management and high level of automation, can greatly improve productivity, food safety, and efficiency in the agri-food supply chain. This paper presents a customized smart farming system that uses a low-cost, low-power, and wide-range wireless sensor network based on Internet of Things (IoT) and Long Range (LoRa) technologies. In this system, LoRa connectivity is integrated with existing Programmable Logic Controllers (PLCs), which are commonly used in industry and farming to control multiple processes, devices, and machinery through the Simatic IOT2040. The system also includes a newly developed web-based monitoring application hosted on a cloud server, which processes data collected from the farm environment and allows for remote visualization and control of all connected devices. A Telegram bot is included for automated communication with users through this mobile messaging app. The proposed network structure has been tested, and the path loss in the wireless LoRa is evaluated.
In this article, a new efficient and robust approach—the high-resolution microwave imaging system—for early breast cancer diagnosis is presented. The core concept of the proposed approach is to employ a combination of a newly proposed delay-and-sum (DAS) algorithm and the specific absorption rate (SAR) parameter to provide high image quality of breast tumors, along with fast image processing. The new algorithm enhances the tumor response by altering the parameter referring to the distance between the antenna and the tumor in the conventional DAS matrices. This adjustment entails a much clearer reconstructed image with short processing time. To achieve these aims, a high directional Vivaldi antenna is applied around a simulated hemispherical breast model with an embedded tumor. The detection of the tumor is carried out by calculating the maximum value of SAR inside the breast model. Consequently, the antenna position is relocated near the tumor region and is moved to nine positions in a trajectory path, leading to a shorter propagation distance in the image-creation process . At each position, the breast model is illuminated with short pulses of low power waves, and the back-scattered signals are recorded to produce a two-dimensional image of the scanned breast. Several simulations of testing scenarios for reconstruction imaging are investigated. These simulations involve different tumor sizes and materials. The influence of the number of antennas on the reconstructed images is also examined. Compared with the results from the conventional DAS, the proposed technique significantly improves the quality of the reconstructed images, and it detects and localizes the cancer inside the breast with high quality in a fast computing time, employing fewer antennas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.