Chemical warfare agents containing phosphonate ester bonds are among the most toxic chemicals known to mankind. Recent global military events, such as the conflict and disarmament in Syria, have brought into focus the need to find effective strategies for the rapid destruction of these banned chemicals. Solutions are needed for immediate personal protection (for example, the filtration and catalytic destruction of airborne versions of agents), bulk destruction of chemical weapon stockpiles, protection (via coating) of clothing, equipment and buildings, and containment of agent spills. Solid heterogeneous materials such as modified activated carbon or metal oxides exhibit many desirable characteristics for the destruction of chemical warfare agents. However, low sorptive capacities, low effective active site loadings, deactivation of the active site, slow degradation kinetics, and/or a lack of tailorability offer significant room for improvement in these materials. Here, we report a carefully chosen metal-organic framework (MOF) material featuring high porosity and exceptional chemical stability that is extraordinarily effective for the degradation of nerve agents and their simulants. Experimental and computational evidence points to Lewis-acidic Zr(IV) ions as the active sites and to their superb accessibility as a defining element of their efficacy.
Metal-organic frameworks (MOFs) with the Zr 6 O 4 (OH) 4 secondary building unit (SBU) have been of particular interest for potential commercial and industrial uses because they can be easily tailored and are reported to be chemically and thermally stable. However, we show that there are significant changes in chemical and thermal stability of Zr 6 O 4 (OH) 4 MOFs with the incorporation of different organic linkers. As the number of aromatic rings is increased from one to two in 1,4-benzene dicarboxylate (UiO-66, ZrMOF-BDC) and 4,4 0 -biphenyl dicarboxylate (UiO-67, ZrMOF-BPDC), the Zr 6 O 4 (OH) 4 SBU becomes more susceptible to chemical degradation by water and hydrochloric acid. Furthermore, as the linker is replaced with 2,2 0 -bipyridine-5,5 0 -dicarboxylate (ZrMOF-BIPY) the chemical stability decreases further as the MOF is susceptible to chemical breakdown by protic chemicals such as methanol and isopropanol. The results reported here bring into question the superior structural stability of the UiO-67 analogs as reported by others. Furthermore, the degradation mechanisms proposed here may be applied to other classes of MOFs containing aromatic dicarboxylate organic linkers, in order to predict their structural stability upon exposure to solvents.
Metal-organic frameworks (MOFs) with metal-carboxylate bonds, including Cu-BTC (HKUST-1), Mg-MOF-74 (Mg/DOBDC), and UiO-66, have been shown to have varying degrees of water stability. The three MOFs in this study are three of the most highly studied MOFs in the literature. We investigate here how each MOF degrades at several temperature and humidity conditions over the course of 28 days. At conditions of 90% relative humidity (RH) and 25 C, water uptake for Cu-BTC is shown to be higher than at 90% RH and 40 C, causing the degradation of the inner structure of Cu-BTC to occur more readily at the lower temperature.However the external surfaces of Cu-BTC degrade more readily, as shown through SEM images, at conditions of 90% RH and 40 C. Mg-MOF-74 has a nearly complete loss of surface area after just one day of exposure to each of the conditions studied, however the PXRD patterns show only a change in the [100] peak. We offer here a novel mechanism for the degradation of Mg-MOF-74, involving a 6-coordinate Mg intermediate, which leaves the 1-dimensional channels of Mg-MOF-74 intact. Furthermore, we conclude that UiO-66 is stable to each of the aging conditions for the full 28 days of this study.
Metal organic frameworks (MOFs) are a leading class of porous materials for a wide variety of applications, but many of them have been shown to be unstable toward water. Cu-BTC (1,3,5 benzenetricarboxylic acid, BTC) was treated with a plasma-enhanced chemical vapor deposition (PECVD) of perfluorohexane creating a hydrophobic form of Cu-BTC. It was found that the treated Cu-BTC could withstand high humidity and even submersion in water much better than unperturbed Cu-BTC. Through Monte Carlo simulations it was found that perfluorohexane sites itself in such a way within Cu-BTC as to prevent the formation of water clusters, hence preventing the decomposition of Cu-BTC by water. This PECVD of perfluorohexane could be exploited to widen the scope of practical applications of Cu-BTC and other MOFs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.