For the remediation of oil spills and organic solvent leakage into water, it is desirable to develop not only advanced sorbents with a high adsorption capability but also labor-and time-saving apparatuses that can work continuously without human intervention. In this work, we synthesized a novel and highly stable porous coordination polymer (PCP, also called metal-organic framework), University of Science and Technology of China-6 (USTC-6), with a corrugated -CF 3 surface that features high hydrophobicity. The uniform growth of USTC-6 throughout a graphene oxide (GO)-modified sponge was achieved and yielded a macroscopic USTC-6@GO@sponge sorbent, which repels water and exhibits a superior adsorption capacity for diverse oils and organic solvents. Remarkably, the sorbent can be further assembled with tubes and a self-priming pump to build a model apparatus that affords consecutive and efficient oil recovery from water. The easy and fast recovery of oils/organic solvents from water based on such an apparatus indicates that it has great potential for future water purification and treatment.