We illustrate the use of catalytic nanowire motors for directional motion and microscale transport of cargo within microfluidic channel networks. The CNT-based synthetic nanomotor can propel a large cargo load at high speeds through predetermined paths and junctions of the microchannel network. The magnetic properties of the nickel-containing nanomotors offer controlled cargo manipulations, including en-route load, drag, and release. Such use of synthetic nanomachines can lead to chemically powered versatile laboratory-on-a-chip devices performing a series of tasks simultaneously or sequentially.
Synthetic nanoscale motors represent a major step toward the development of practical nanomachines. Despite impressive progress, man-made nanomachines lack the efficiency and speed of their biological counterparts. Here we show that the incorporation of carbon nanotubes (CNT) into the platinum (Pt) component of asymmetric metal nanowire motors leads to dramatically accelerated movement in hydrogen-peroxide solutions, with average speeds (50-60 microm/s) approaching those of natural biomolecular motors. Further acceleration to 94 microm/s, with some motors moving above 200 microm/sis observed upon adding hydrazine to the peroxide fuel. Factors influencing the accelerated movement, including the CNT loading and fuel concentration, are examined. Such development of highly efficient and controllable nanomotors offers great promise for self-powered nanoscale transport and delivery systems.
Nanowires have received considerable attention owing to their broad potential applications. We report here on the application of nanowires for magnetic control of the electrochemical reactivity and demonstrate how one can modulate the electrocatalytic activity by orienting catalytic nanowires at different angles. Unlike early "on/off" magnetic switching studies based on functionalized magnetic spheres, the present magnetoswitchable protocol relies on modulating the electrochemical reactivity without removing the magnetic material from the surface. Such behavior is attributed to the reversible blocking of the redox processes and to changes in the tortuosity-dependent flux rate. The nanowire-based magnetoswitchable protocol may be extremely useful for adjusting the electrochemical reactivity, such as for tuning the power output of fuel cells (rather than switching the power on/off).
We describe here a miniaturized flexible thick-film electrochemical biosensor flow detector, suitable for insertion into the lacrimal canaliculus towards minimally invasive amperometric monitoring of biomarkers in the tear fluid. Our focus here is on the microfabrication and in-vitro testing of the new laterally rolled screen-printed sensor. The new device responds rapidly and sensitively to dynamic changes in the levels of norepinephrine and glucose (the later in connection to glucose-oxidase containing ink). Coverage of the enzyme electrode with an electropolymerized polytyramine minimizes contributions from the common electroactive interferences ascorbic and uric acids. Such attractive performance indicates great promise for minimally invasive monitoring of health biomarkers in the tear fluid, or in alternative usage such as capillary microelectrophoresis, ultralow volume sampling, or in-flow (tubular) systems for batch processing of blood or culture media.
Step-like porous gold nanowires of different shapes and diameters have been prepared by sequentially depositing alloy segments composed of different gold/silver ratios and de-alloying the silver component. For example, step-cone and nano-barbell porous gold nanowires were generated by a membrane-templated sequential deposition of gold-silver alloy segments from plating solutions of respectively decreasing or alternating gold/silver composition ratios. Alloy segments of different gold/silver ratios, prepared by using different plating potentials, also lead to multistep nanowires. In addition to step-like nanowires, we describe the preparation of cone- and bone-shaped porous nanowires from alloy nanowires of longitudinally changing compositions, generated via deposition from a flowing plating solution of a continuously changing composition. Such customization of the porous gold nanostructure is attributed to the chemical removal of silver and the different extents of gold reordering from alloy segments of different compositions. The latter leads to porous gold segments of smaller diameters from silver-rich alloy segments. The new "nanomachining" concept is versatile and could be extended to nanowires of diverse shapes with a variety of properties, generating an attractive assortment of nano-hardware.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.