An important question in regional climate downscaling is whether to constrain (nudge) the interior of the limited-area domain toward the larger-scale driving fields. Prior research has demonstrated that interior nudging can increase the skill of regional climate predictions originating from historical data. However, there is concern that nudging may also inhibit the regional model's ability to properly develop and simulate mesoscale features, which may reduce the value added from downscaling by altering the representation of local climate extremes. Extreme climate events can result in large economic losses and human casualties, and regional climate downscaling is one method for projecting how climate change scenarios will affect extreme events locally. In this study, the effects of interior nudging are explored on the downscaled simulation of temperature and precipitation extremes. Multidecadal, continuous Weather Research and Forecasting model simulations of the contiguous United States are performed using coarse reanalysis fields as proxies for global climate model fields. The results demonstrate that applying interior nudging improves the accuracy of simulated monthly means, variability, and extremes over the multidecadal period. The results in this case indicate that interior nudging does not inappropriately squelch the prediction of temperature and precipitation extremes and is essential for simulating extreme events that are faithful in space and time to the driving largescale fields.
This study evaluates interior nudging techniques using the Weather Research and Forecasting (WRF) model for regional climate modeling over the conterminous United States (CONUS) using a two-way nested configuration. NCEP–Department of Energy Atmospheric Model Intercomparison Project (AMIP-II) Reanalysis (R-2) data are downscaled to 36 km × 36 km by nudging only at the lateral boundaries, using gridpoint (i.e., analysis) nudging and using spectral nudging. Seven annual simulations are conducted and evaluated for 1988 by comparing 2-m temperature, precipitation, 500-hPa geopotential height, and 850-hPa meridional wind to the 32-km North American Regional Reanalysis (NARR). Using interior nudging reduces the mean biases for those fields throughout the CONUS compared to the simulation without interior nudging. The predictions of 2-m temperature and fields aloft behave similarly when either analysis or spectral nudging is used. For precipitation, however, analysis nudging generates monthly precipitation totals, and intensity and frequency of precipitation that are closer to observed fields than spectral nudging. The spectrum of 250-hPa zonal winds simulated by the WRF model is also compared to that of the R-2 and NARR. The spatial variability in the WRF model is reduced by using either form of interior nudging, and analysis nudging suppresses that variability more strongly than spectral nudging. Reducing the nudging strengths on the inner domain increases the variability but generates larger biases. The results support the use of interior nudging on both domains of a two-way nest to reduce error when the inner nest is not otherwise dominated by the lateral boundary forcing. Nevertheless, additional research is required to optimize the balance between accuracy and variability in choosing a nudging strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.