The objectives were to determine the sensitivity, specificity, and cutoff values of a visual-based precision livestock technology (NUtrack), and determine the sensitivity and specificity of sickness score data collected with the live observation by trained human observers. At weaning, pigs (n = 192; gilts and barrows) were randomly assigned to one of twelve pens (16/pen) and treatments were randomly assigned to pens. Sham-pen pigs all received subcutaneous saline (3 mL). For LPS-pen pigs, all pigs received subcutaneous lipopolysaccharide (LPS; 300 μg/kg BW; E. coli O111:B4; in 3 mL of saline). For the last treatment, eight pigs were randomly assigned to receive LPS, and the other eight were sham (same methods as above; half-and-half pens). Human data from the day of the challenge presented high true positive and low false positive rates (88.5% sensitivity; 85.4% specificity; 0.871 Area Under Curve, AUC), however, these values declined when half-and-half pigs were scored (75% sensitivity; 65.5% specificity; 0.703 AUC). Precision technology measures had excellent AUC, sensitivity, and specificity for the first 72 h after treatment and AUC values were >0.970, regardless of pen treatment. These results indicate that precision technology has a greater potential for identifying pigs during a natural infectious disease event than trained professionals using timepoint sampling.
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Highlights Dynamic space utilization was estimated for lame and non-lame sows Laying-standing sequence was used to estimate dynamic space utilization On average, sows needed 1.2 ± 0.4 m 2 to lay and to stand-up Lameness did not affect the space used to lay, stand-up, or to turn around.
This study aimed to identify possible differences in the lying and standing sequence between lame and non-lame gestating sows. A total of 85 stall-housed sows (average parity 0.9 ± 1.14; range 0-4) were scored for walking lameness on a 3-point scale (1 = normal to 3=severely lame) while moving to a separate gestation stall for recording of one lying-standing event on days 30, 60 and 90 of gestation. A video camera was positioned on the adjacent stall so sows' profiles were visible. Observations ceased when the sow laid-down and stood-up, or 2.5 h elapsed from recording commencement. From videos, postures and movements that occurred during lyingstanding sequences were identified. Time (seconds) from kneeling to shoulder rotation (KSR), shoulder rotation to lying (SRHQ), total time to lie (TLIE); latency to lie (LATENCY; minutes) and number of attempts to successfully lie were recorded. Also, time taken from first leg fold to sit (TLS), time from sit to rise (TSR), and total time to rise (TRISE) were recorded. Sows were re-classified as non-lame (score 1) and lame (scores ≥ 2). Data were analyzed using mixed model methods with gestation day, and lameness as fixed effects and sow the random effect. On average, sows took 14.3 ± 1.39 s for KSR, 7.7 ± 0.79 s for SRHQ, 21.0 ± 1.37 s for TLIE and 63.6 ± 5.97 min for LATENCY. Furthermore, sows took 8.8 ± 2.80 s for TLS, 5.95 ± 1.73 s for TSR, and 10.3 ± 2.02 s for TRISE. There were no associations between lameness status or gestation day with time required for or the likelihood of performing the different movements of the lying and standing sequences (P > 0.05). Except for lame sows tending to sit more while transitioning from lying to standing than non-lame sows (P = 0.09). Seven different lying and 4 different standing combination deviation from the normal sequences, albeit each combination was infrequent and did not allow for statistical analysis. However, all together, deviations from the normal lying and standing sequence accounted for 22.7 % and 35 % of total observations; respectively. Under the conditions of this study, lameness did not influence the time taken or the likelihood of performing different movements and/or postures during normal lying-standing sequences. However, this could be due to lameness recorded here not being severe enough to affect the sequences. The observed deviations suggest that there is variation in the way sows lie and stand although more research is necessary to understand which factors contribute to such variation.
C. A human tactile behavior test was developed (Corticalmetrics) and is not invasive. The patient places two finger over the buttons on the mouse and responds with the other hand if the stimuli were on the index finger or the middle finder. The error rate and response times provide information about the functioning of the somatosensory cortex and some cognition (e.g. hippocampus and anterior cingular cortex). This measure allows for repeated tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.