Hotter summers caused by global warming and increased workload and duration are endangering the health of farmworkers, a high-risk population for heat-related illness (HRI), and deaths. Although prior studies using wearable sensors show the feasibility of employing field-collected data for HRI monitoring, existing devices still have limitations, such as data loss from motion artifacts, device discomfort from rigid electronics, difficulties with administering ingestible sensors, and low temporal resolution. Here, this paper introduces a wireless, wearable bioelectronic system with functionalities for continuous monitoring of skin temperature, electrocardiograms (ECG), heart rates (HR), and activities, configured in a single integrated package. Advanced nanomanufacturing based on laser machining allows rapid device fabrication and direct incorporation of sensors with a highly breathable substrate, allowing for managing excessive sweating and multimodal stresses. To validate the device's performance in agricultural settings, the device is applied to multiple farmworkers at various operations, including fernery, nursery, and crop. The accurate data recording, including high-fidelity ECG (signal-to-noise ratio: >20 dB), accurate HR (r = 0.89, r 2 = 0.65 in linear correlation), and reliable temperature/activity, confirms the device's capability for multiparameter health monitoring of farmworkers.
Activities and physical effort have been commonly estimated using a metabolic rate through indirect calorimetry to capture breath information. The physical effort represents the work hardness used to optimize wearable robotic systems. Thus, personalization and rapid optimization of the effort are critical. Although respirometry is the gold standard for estimating metabolic costs, this method requires a heavy, bulky, and rigid system, limiting the system’s field deployability. Here, this paper reports a soft, flexible bioelectronic system that integrates a wearable ankle-foot exoskeleton, used to estimate metabolic costs and physical effort, demonstrating the potential for real-time wearable robot adjustments based on biofeedback. Data from a set of activities, including walking, running, and squatting with the biopatch and exoskeleton, determines the relationship between metabolic costs and heart rate variability root mean square of successive differences (HRV-RMSSD) (R = −0.758). Collectively, the exoskeleton-integrated wearable system shows potential to develop a field-deployable exoskeleton platform that can measure wireless real-time physiological signals.
Analysis & Sensing www.analysis-sensing.org Review doi.org/10.1002/anse.202200062Wearable devices have received significant attention recently for their ability to monitor critical physiological signals noninvasively, such as electrocardiography, electroencephalography, electromyography, and photoplethysmography. These biointegrated wearable systems can potentially fill gaps in conventional clinical practice by providing highly cost-effective health characterization and portable continuous health monitoring. Further, the physiological signals measured by wearables require post-processing to derive meaningful values, such as heart rate or blood oxygen saturation. This requirement, in conjunction with the smaller form factor and limited sensor count of the miniaturized systems, often necessitates robust signal processing and data analysis to approach the stringent performance specifications of conventional medical devices, and machine learning techniques have found success in filling this analytical role for their ability to learn complex functional relationships. Thus, this review outlines a systematic summary of the latest research on various wearable devices and their biosignal sensing and signal processing methods, emphasizing machine learning. We also discuss the developmental challenges and advantages of current machine-learning methods, while suggesting research directions for future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.