The parent compounds of the copper oxide high-transition-temperature (high-Tc) superconductors are unusual insulators (so-called Mott insulators). Superconductivity arises when they are 'doped' away from stoichiometry. For the compound Bi2Sr2CaCu2O8+x, doping is achieved by adding extra oxygen atoms, which introduce positive charge carriers ('holes') into the CuO2 planes where the superconductivity is believed to originate. Aside from providing the charge carriers, the role of the oxygen dopants is not well understood, nor is it clear how the charge carriers are distributed on the planes. Many models of high-Tc superconductivity accordingly assume that the introduced carriers are distributed uniformly, leading to an electronically homogeneous system as in ordinary metals. Here we report the presence of an electronic inhomogeneity in Bi2Sr2CaCu2O8+x, on the basis of observations using scanning tunnelling microscopy and spectroscopy. The inhomogeneity is manifested as spatial variations in both the local density of states spectrum and the superconducting energy gap. These variations are correlated spatially and vary on the surprisingly short length scale of approximately 14 A. Our analysis suggests that this inhomogeneity is a consequence of proximity to a Mott insulator resulting in poor screening of the charge potentials associated with the oxygen ions left in the BiO plane after doping, and is indicative of the local nature of the superconducting state.
BaFe 2 As 2 exhibits properties characteristic of the parent compounds of the newly discovered iron (Fe)-based high-T C superconductors. By combining the real space imaging of scanning tunneling microscopy/spectroscopy (STM/S) with momentum space quantitative Low Energy Electron Diffraction (LEED) we have identified the surface plane of cleaved BaFe 2 As 2 crystals as the As terminated Fe-As layer -the plane where superconductivity occurs. LEED and STM/S data on the BaFe 2 As 2 (001) surface indicate an ordered arsenic (As) -terminated metallic surface without reconstruction or lattice distortion. It is surprising that the STM images the different Fe-As orbitals associated with the orthorhombic structure, not the As atoms in the surface plane.
Context. High contrast imaging has thoroughly combed through the limited search space accessible with first-generation groundbased adaptive optics instruments and the Hubble Space Telescope. Only a few objects were discovered, and many non-detections reported and statistically interpreted. The field is now in need of a technological breakthrough. Aims. Our aim is to open a new search space with first-generation systems such as NACO at the Very Large Telescope, by providing ground-breaking inner working angle (IWA) capabilities in the L band. The L band is a sweet spot for high contrast coronagraphy since the planet-to-star brightness ratio is favorable, while the Strehl ratio is naturally higher.Methods. An annular groove phase mask (AGPM) vector vortex coronagraph optimized for the L band made from diamond subwavelength gratings was manufactured and qualified in the lab. The AGPM enables high contrast imaging at very small IWA, potentially being the key to unexplored discovery space. Results. Here we present the installation and successful on-sky tests of an L'-band AGPM coronagraph on NACO. Using angular differential imaging, which is well suited to the rotational symmetry of the AGPM, we demonstrated a ∆L > 7.5 mag contrast from an IWA 0. 09 onwards, during average seeing conditions, and for total integration times of a few hundred seconds.
A correlated material in the vicinity of an insulator-metal transition (IMT) exhibits rich phenomenology and variety of interesting phases. A common avenue to induce IMTs in Mott insulators is doping, which inevitably leads to disorder. While disorder is well known to create electronic inhomogeneity, recent theoretical studies have indicated that it may play an unexpected and much more profound role in controlling the properties of Mott systems. Theory predicts that disorder might play a role in driving a Mott insulator across an IMT, with the emergent metallic state hosting a power law suppression of the density of states (with exponent close to 1; V-shaped gap) centered at the Fermi energy. Such V-shaped gaps have been observed in Mott systems but their origins are as yet unknown. To investigate this, we use scanning tunneling microscopy and spectroscopy to study isovalent Ru substitutions in Sr3(Ir1-xRux)2O7 (0≤x≤0.5) which drives the system into an antiferromagnetic, metallic state. Our experiments reveal that many core features of the IMT such as power law density of states, pinning of the Fermi energy with increasing disorder, and persistence of antiferromagnetism can be understood as universal features of a disordered Mott system near an IMT and suggest that V-shaped gaps may be an inevitable consequence of disorder in doped Mott insulators.
SPHERE is the VLT second generation planet hunter instrument. Installed since may 2014 on UT3, the system has been commissionned and verified for more than one year now and routinely delivers unprecedented images of star surroundings, exoplanets and dust disks. The exceptionnal performance required for this kind of observation makes the appointment: a repeatable Strehl Ratio of 90% in H band, a rough contrast level of 10-5@0.5 arcsec, and reaches 10-6 at the same separation after differential imaging (SDI, ADI). The instrument also presents high contrast levels in the visible and an unprecedented 17mas diffraction-limited resolution at 0.65 microns wavelength. SAXO is the SPHERE XAO system, allowing the system to reach its final detectivity. Its high performance and therefore highly sensitive capacities turns a new eye on telescope environement. Even if XAO performance are reached as expected, some unexpected limitations are here described and a first work around is proposed and discussed. Spatial limitation: wave-front aberrations have been identified, deviating from kolmogorov statistics, and therefore not easily seen and compensated for by the XAO system. The impact of this limitations results in a degraded performance in some particular low wind conditions. Solutions are developped and tested on sky to propose a new operation procedure reducing this limitation. Temporal limitation: high amplitude vibrations on the low order modes have been issued, due to telescope environment and XAO behaviour. Again, a solution is developped and an assessment of its performance is dressed. The potential application of these solutions to E-ELT is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.