Environmental change, accelerated by anthropogenic activities, threatens many species and can be especially challenging for rare species given their potentially limited capacity for migration and adaptation relative to more common species. The ability to acclimate via phenotypic plasticity could provide an important path to species persistence in the face of such change. We investigated the responses of an endangered plant species endemic to a highly dynamic riparian habitat in southeastern Tennessee, USA, and its most widespread congener to environmental change to elucidate their current statuses and future vulnerability. Specifically, we compared the population-and species-level plasticity of rare Pityopsis ruthii and common P. graminifolia to contrasting light, temperature, and water conditions in a growth chamber experiment to evaluate their potential to acclimate to environmental change. Contrary to our expectations, P. ruthii had greater phenotypic plasticity than its common congener in response to both altered light and water availability. But this plasticity was not associated with increased fitness, suggesting that it was not adaptive. Concurrently, we genotyped these individuals at nine putatively neutral microsatellite loci to contrast genetic diversity across the range of each species. As expected, P. ruthii exhibited reduced genetic diversity relative to its more common congener. Overall, our findings accord with the narrow range and current habitat specificity of P. ruthii, especially its tolerance of highly variable water, and highlight its potential vulnerability to future environmental change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.