Warehouse operations, specifically order picking process, are receiving close attention of researches due to the need of companies in minimizing operational costs. This chapter explains an ant colony optimization (ACO) approach to improve the order picking process in an auto parts store associated with the components of a classic Volkswagen Beetle car. Order picking represents the most time-consuming task in the warehouse operational expenses and, according to the scientific literature, is becoming a subject matter in operational research. It implements a low-level, picker-to-part order picking using persons as pickers with multiple picks per route. The context of the case study is a discrete picking where users' orders are independent. The authors use mathematical modeling to improve de ACO metaheuristic approach to minimize the order-picking cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.