The DNA in many organisms, including humans, is shown to be organized in topologically associating domains (TADs). In Drosophila, several architectural proteins are enriched at TAD borders, but it is still unclear whether these proteins play a functional role in the formation and maintenance of TADs. Here, we show that depletion of BEAF-32, Cp190, Chro, and Dref leads to changes in TAD organization and chromatin loops. Their depletion predominantly affects TAD borders located in regions moderately enriched in repressive modifications and depleted in active ones, whereas TAD borders located in euchromatin are resilient to these knockdowns. Furthermore, transcriptomic data has revealed hundreds of genes displaying differential expression in these knockdowns and showed that the majority of differentially expressed genes are located within reorganized TADs. Our work identifies a novel and functional role for architectural proteins at TAD borders in Drosophila and a link between TAD reorganization and subsequent changes in gene expression.
Background Enhancers are non-coding regions of the genome that control the activity of target genes. Recent efforts to identify active enhancers experimentally and in silico have proven effective. While these tools can predict the locations of enhancers with a high degree of accuracy, the mechanisms underpinning the activity of enhancers are often unclear. Results Using machine learning (ML) and a rule-based explainable artificial intelligence (XAI) model, we demonstrate that we can predict the location of known enhancers in Drosophila with a high degree of accuracy. Most importantly, we use the rules of the XAI model to provide insight into the underlying combinatorial histone modifications code of enhancers. In addition, we identified a large set of putative enhancers that display the same epigenetic signature as enhancers identified experimentally. These putative enhancers are enriched in nascent transcription, divergent transcription and have 3D contacts with promoters of transcribed genes. However, they display only intermediary enrichment of mediator and cohesin complexes compared to previously characterised active enhancers. We also found that 10–15% of the predicted enhancers display similar characteristics to super enhancers observed in other species. Conclusions Here, we applied an explainable AI model to predict enhancers with high accuracy. Most importantly, we identified that different combinations of epigenetic marks characterise different groups of enhancers. Finally, we discovered a large set of putative enhancers which display similar characteristics with previously characterised active enhancers.
Background Myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) is a common, long-term condition characterised by post-exertional malaise, often with fatigue that is not significantly relieved by rest. ME/CFS has no confirmed diagnostic test or effective treatment and we lack knowledge of its causes. Identification of genes and cellular processes whose disruption adds to ME/CFS risk is a necessary first step towards development of effective therapy. Methods Here we describe DecodeME, an ongoing study co-produced by people with lived experience of ME/CFS and scientists. Together we designed the study and obtained funding and are now recruiting up to 25,000 people in the UK with a clinical diagnosis of ME/CFS. Those eligible for the study are at least 16 years old, pass international study criteria, and lack any alternative diagnoses that can result in chronic fatigue. These will include 5,000 people whose ME/CFS diagnosis was a consequence of SARS-CoV-2 infection. Questionnaires are completed online or on paper. Participants’ saliva DNA samples are acquired by post, which improves participation by more severely-affected individuals. Digital marketing and social media approaches resulted in 29,000 people with ME/CFS in the UK pre-registering their interest in participating. We will perform a genome-wide association study, comparing participants’ genotypes with those from UK Biobank as controls. This should generate hypotheses regarding the genes, mechanisms and cell types contributing to ME/CFS disease aetiology. Discussion The DecodeME study has been reviewed and given a favourable opinion by the North West – Liverpool Central Research Ethics Committee (21/NW/0169). Relevant documents will be available online (www.decodeme.org.uk). Genetic data will be disseminated as associated variants and genomic intervals, and as summary statistics. Results will be reported on the DecodeME website and via open access publications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.