Soil rutting caused by forest operations has negative economic and ecological effects and thus limits for rutting are set by forest laws and sustainability criteria. Extensive data on rut depths are necessary for post-harvest quality control and development of models that link environmental conditions to rut formation. This study explored the use of a Light Detection and Ranging (LiDAR) sensor mounted on a forest harvester and forwarder to measure rut depths in real harvesting conditions in Southern Finland. LiDAR-derived rut depths were compared to manually measured rut depths. The results showed that at 10-20 m spatial resolution, the LiDAR method can provide unbiased estimates of rut depth with root mean square error (RMSE) < 3.5 cm compared to the manual rut depth measurements. The results suggest that a LiDAR sensor mounted on a forest vehicle can in future provide a viable method for the large-scale collection of rut depth data as part of normal forestry operations.
The significance of above-ground biomass, moisture content and mechanical properties of peat layer on the bearing capacity of ditched pine bogs Uusitalo J., Ala-Ilomäki J. (2013). The significance of above-ground biomass, moisture content and mechanical properties of peat layer on the bearing capacity of ditched pine bogs. Silva Fennica vol. 47 no. 3 article id 993. 18 p.
AbstractIntensive utilisation of peatland forests calls for logging activities to be increasingly carried out in conditions other than those in harsh winter. The low bearing capacity of peatlands forms a severe obstacle for the prevailing harvesting machinery. The aim of this study was to clarify and quantify the significance of above-ground biomass, brash mat, moisture content and mechanical properties of peat layer on the bearing capacity of pine bogs. In-situ driving tests were conducted in Western Finland on a pine bog covering a large variation of growing stock. Portable tools were tested for measuring strength properties of the top layer of peat. According to the results, shear modulus of top layer of peat, volume of trees and the existence of cutting debris are the most important factors affecting bearing capacity. Spiked shear vane was shown to be a promising tool in predicting the strength properties of peat soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.