We revisit the k-Secluded Tree problem. Given a vertexweighted undirected graph G, its objective is to find a maximum-weight induced subtree T whose open neighborhood has size at most k. We present a fixed-parameter tractable algorithm that solves the problem in time 2 O(k log k) • n O(1) , improving on a double-exponential running time from earlier work by Golovach, Heggernes, Lima, and Montealegre. Starting from a single vertex, our algorithm grows a k-secluded tree by branching on vertices in the open neighborhood of the current tree T . To bound the branching depth, we prove a structural result that can be used to identify a vertex that belongs to the neighborhood of any k-secluded supertree T ′ ⊇ T once the open neighborhood of T becomes sufficiently large. We extend the algorithm to enumerate compact descriptions of all maximum-weight k-secluded trees, which allows us to count the number of maximum-weight k-secluded trees containing a specified vertex in the same running time.
We investigate preprocessing for vertex-subset problems on graphs. While the notion of kernelization, originating in parameterized complexity theory, is a formalization of provably effective preprocessing aimed at reducing the total instance size, our focus is on finding a non-empty vertex set that belongs to an optimal solution. This decreases the size of the remaining part of the solution which still has to be found, and therefore shrinks the search space of fixed-parameter tractable algorithms for parameterizations based on the solution size. We introduce the notion of a c-essential vertex as one that is contained in all c-approximate solutions. For several classic combinatorial problems such as Odd Cycle Transversal and Directed Feedback Vertex Set, we show that under mild conditions a polynomial-time preprocessing algorithm can find a subset of an optimal solution that contains all 2-essential vertices, by exploiting packing/covering duality. This leads to FPT algorithms to solve these problems where the exponential term in the running time depends only on the number of non-essential vertices in the solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.