Lipopolysaccharide (LPS) is a stimulator of the innate immune system and is routinely used in animal models to study blood-brain barrier (BBB) dysfunction under inflammatory conditions. It is appreciated that both humans and mice have sexually dimorphic immune responses, which could influence the brain’s response to a systemic inflammatory insult. Mouse strain is also an important factor that can contribute to pathophysiological responses to inflammatory stimuli. Therefore, we aimed to test whether BBB disruption and the associated cytokine profiles in response to LPS differed in male and female mice from two mouse strains most commonly used in blood-brain barrier studies: CD-1 and C57BL6/J (C57). Mice were treated with saline, a single injection of 0.3, or 3mg/kg LPS, or three injections of 3mg/kg LPS, and studied 28 hours after the first LPS injection. To assay BBB disruption, we utilized the tracer 99mTc-DTPA. A 23-plex panel of cytokines was assayed in brain and blood of the same cohort of mice, which allowed us to compare differences in the levels of individual cytokines as well as correlations among cytokines and 99mTc-DTPA uptake. We found that only the three-injection dose of LPS induced significant BBB disruption in all sexes and strains. The treatment, strain, and sex, as well as treatment-by- strain and treatment-by-sex interactions significantly contributed to the variance. The mean brain/serum ratios of 99mTc-DTPA in the three-injection LPS group were ranked CD-1 male < CD-1 female < C57 male < C57 female. There were significant sex and strain differences in cytokine profiles in brain and blood, and pro-inflammatory cytokines and chemokines in brain were most strongly correlated with 99mTc-DTPA brain/serum ratios.
Ozone (O3) is an air pollutant which primarily damages the lungs, but growing evidence supports that O3 exposure can also affect the brain. Serum amyloid A (SAA) and kynurenine have been identified as circulating factors that are upregulated by O3, and both can contribute to depressive-like behaviors in mice. However, little is known about the relations of O3 exposure to sickness and depressive-like behaviors in experimental settings. In this study, we evaluated O3 dose-, time- and sex-dependent changes in circulating SAA in context of pulmonary inflammation and damage, sickness and depressive-like behavioral changes, and systemic changes in kynurenine and indoleamine 2,3-dioxygenase (IDO), an enzyme that regulates kynurenine production and contributes to inflammation-induced depressive-like behaviors. Our results in Balb/c and CD-1 mice showed that 3ppm O3, but not 2 or 1ppm O3, caused elevations in serum SAA and pulmonary neutrophils, and these responses resolved by 48 hours. Sickness and depressive-like behaviors were observed at all O3 doses (1-3ppm), although the detection of certain behavioral changes varied by dose. We also found that Ido1 mRNA expression was increased in the brain and spleen 24 hours after 3ppm O3, and that kynurenine was increased in blood. Together, these findings indicate that acute O3 exposure induces transient symptoms of sickness and depressive-like behaviors which may occur in the presence or absence of overt pulmonary neutrophilia and systemic increases of SAA. We also present evidence that the IDO/kynurenine pathway is upregulated systemically following an acute exposure to O3 in mice.
Purpose Anesthetics are required for procedures that deliver drugs/biologics, infectious/inflammatory agents, and toxicants directly to the lungs. However, the possible confounding effects of anesthesia on lung inflammation and injury are underreported. Here, we evaluated the effects of two commonly used anesthetic regimens on lung inflammatory responses to ozone in mice. Methods We tested the effects of brief isoflurane (Iso) or ketamine/xylazine/atipamezole (K/X/A) anesthesia prior to ozone exposure (4 h, 3 ppm) on lung inflammatory responses in mice. Anesthesia regimens modeled those used for non-surgical intratracheal instillations and were administered 1–2 h or 24 h prior to initiating ozone exposure. Results We found that Iso given 1–2 h prior to ozone inhibited inflammatory responses in the lung, and this effect was absent when Iso was given 23–24 h prior to ozone. In contrast, K/X/A given 1–2 h prior to ozone increased lung and systemic inflammation. Conclusion Our results highlight the need to comprehensively evaluate anesthesia as an experimental variable in the assessment of lung inflammation in response to ozone and other inflammatory stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.