Patients with PSC exhibited a gut microbial signature distinct from both HC and UC without liver disease, but similar in PSC with and without IBD. The genus, which is also associated with other chronic inflammatory and fibrotic conditions, was enriched in PSC.
Common variable immunodeficiency (CVID) is the most common symptomatic primary immunodeficiency characterized by low immunoglobulin (Ig)G and IgA, and/or IgM. In addition to bacterial infections, a large subgroup has noninfectious inflammatory and autoimmune complications. We performed 16S ribosomal RNA-based profiling of stool samples in 44 CVID patients, 45 patients with inflammatory bowel disease (disease controls), and 263 healthy controls. We measured plasma lipopolysaccharide (LPS) and markers of immune cell activation (i.e., soluble (s) CD14 and sCD25) in an expanded cohort of 104 patients with CVID and in 30 healthy controls. We found a large shift in the microbiota of CVID patients characterized by a reduced within-individual bacterial diversity (alpha diversity, P<0.001) without obvious associations to antibiotics use. Plasma levels of both LPS (P=0.001) and sCD25 (P<0.0001) were elevated in CVID, correlating negatively with alpha diversity and positively with a dysbiosis index calculated from the taxonomic profile. Low alpha diversity and high dysbiosis index, LPS, and immune markers were most pronounced in the subgroup with inflammatory and autoimmune complications. Low level of IgA was associated with decreased alpha diversity, but not independently from sCD25 and LPS. Our findings suggest a link between immunodeficiency, systemic immune activation, LPS, and altered gut microbiota.
The human leukocyte antigen (HLA) complex contains the most polymorphic genes in the human genome. The classical HLA class I and II genes define the specificity of adaptive immune responses. Genetic variation at the HLA genes is associated with susceptibility to autoimmune and infectious diseases and plays a major role in transplantation medicine and immunology. Currently, the HLA genes are characterized using Sanger- or next-generation sequencing (NGS) of a limited amplicon repertoire or labeled oligonucleotides for allele-specific sequences. High-quality NGS-based methods are in proprietary use and not publicly available. Here, we introduce the first highly automated open-kit/open-source HLA-typing method for NGS. The method employs in-solution targeted capturing of the classical class I (HLA-A, HLA-B, HLA-C) and class II HLA genes (HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1, HLA-DPB1). The calling algorithm allows for highly confident allele-calling to three-field resolution (cDNA nucleotide variants). The method was validated on 357 commercially available DNA samples with known HLA alleles obtained by classical typing. Our results showed on average an accurate allele call rate of 0.99 in a fully automated manner, identifying also errors in the reference data. Finally, our method provides the flexibility to add further enrichment target regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.