A single Bacillus thuringiensis strain can harbor numerous different insecticidal crystal protein (cry) genes from 46 known classes or primary ranks. The cry1 primary rank is the best known and contains the highest number of cry genes which currently totals over 130. We have designed an oligonucleotide-based DNA microarray (cryArray) to test the feasibility of using microarrays to identify the cry gene content of B. thuringiensis strains. Specific 50-mer oligonucleotide probes representing the cry1 primary and tertiary ranks were designed based on multiple cry gene sequence alignments. To minimize false-positive results, a consentaneous approach was adopted in which multiple probes against a specific gene must unanimously produce positive hybridization signals to confirm the presence of a particular gene. In order to validate the cryArray, several well-characterized B. thuringiensis strains including isolates from a Mexican strain collection were tested. With few exceptions, our probes performed in agreement with known or PCR-validated results. In one case, hybridization of primarybut not tertiary-ranked cry1I probes indicated the presence of a novel cry1I gene. Amplification and partial sequencing of the cry1I gene in strains IB360 and IB429 revealed the presence of a cry1Ia gene variant. Since a single microarray hybridization can replace hundreds of individual PCRs, DNA microarrays should become an excellent tool for the fast screening of new B. thuringiensis isolates presenting interesting insecticidal activity.The gram-positive bacterium Bacillus thuringiensis produces one or more insecticidal crystal proteins (Cry) in the form of an intracellular parasporal crystal (37). After ingestion by a susceptible insect, Cry proteins dissolve in the insect midgut, where most are subsequently activated by midgut proteases. The protease-resistant toxin binds to specific docking proteins on the microvillous surface of susceptible midgut epithelial cells and then oligomerizes (35). Finally, the oligomeric toxin inserts into the membrane, forming a pore (9). To date, the structure of the internal Cry pore in the membrane remains uncertain; however, studies with synthetic membranes show that during membrane integration, the toxin undergoes a conformational change in which the helix-rich domain I separates from domains II and III (38) and a hairpin, composed of helices ␣4 and ␣5 subsequently inserts into the membrane with ␣4 lining the pore lumen to create a functional ion channel (34).
In a culture converting phenol to benzoic acid under anaerobic conditions and previously described as being constituted of only a Clostridium-like strain 6, another bacterium (strain 7) was observed. Each organism was enriched by centrifugation on a Percoll gradient. Strain 6 was purified by dilution and plating. Strain 7 did not grow on solid media, but a strain 7 culture, cleared of strain 6, was obtained by subculturing in the presence of ampicillin and by dilution. In fresh medium, phenol was transformed by the reconstituted co-culture but not by each strain alone. In a supernatant from a co-culture or from a strain 6 culture, strain 7 alone transformed phenol but not strain 6. Maintenance of an active strain 7 in fresh medium instead of co-culture supernatant became possible when phenol was replaced by 4-hydroxybenzoate (4-OHB), which is decarboxylated to phenol before being transformed to benzoate. Even with 4-OHB, the use of co-culture (or strain 6 culture) supernatant resulted in faster transformation activity and growth rate. A phylogenetic analysis placed strain 7 in a cluster of uncultivated or nonisolated bacteria (92-96% homology). Strain 7 is also related to Desulfotomaculum, Desulfitobacterium, Desulfosporosinus, Moorella, and Sporotomaculum genera (87-92% homology).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.