The formation of methylmercury (MeHg), which is biomagnified in aquatic food chains and poses a risk to human health, is effected by some iron-and sulfate-reducing bacteria (FeRB and SRB) in anaerobic environments. However, very little is known regarding the mechanism of uptake of inorganic Hg by these organisms, in part because of the inherent difficulty in measuring the intracellular Hg concentration. By using the FeRB Geobacter sulfurreducens and the SRB Desulfovibrio desulfuricans ND132 as model organisms, we demonstrate that Hg(II) uptake occurs by active transport. We also establish that Hg(II) uptake by G. sulfurreducens is highly dependent on the characteristics of the thiols that bind Hg(II) in the external medium, with some thiols promoting uptake and methylation and others inhibiting both. The Hg(II) uptake system of D. desulfuricans has a higher affinity than that of G. sulfurreducens and promotes Hg methylation in the presence of stronger complexing thiols. We observed a tight coupling between Hg methylation and MeHg export from the cell, suggesting that these two processes may serve to avoid the build up and toxicity of cellular Hg. Our results bring up the question of whether cellular Hg uptake is specific for Hg(II) or accidental, occurring via some essential metal importer. Our data also point at Hg(II) complexation by thiols as an important factor controlling Hg methylation in anaerobic environments. , methylmercury, MeHg) is a potent neurotoxic compound (1). It is biomagnified in the food webs of aquatic systems, reaching high concentrations in carnivorous fish, thus posing a risk to human health (2). Understanding the mechanism of inorganic Hg methylation and the parameters that control the extent of methylation in the environment is thus essential for relating patterns of Hg pollution to human exposure. The production of MeHg has been linked to obligate anaerobic bacteria in the δ-Proteobacteria, including ironand sulfate-reducing bacteria (FeRB and SRB) that live in soil and sediments (3-6). Although mechanisms of Hg(II) methylation by methylating enzymes have been proposed for some time (7,8), the mechanism of Hg(II) uptake by the bacteria has remained obscure. The dominant view is that cellular uptake occurs by passive diffusion of neutral Hg(II) complexes, particularly sulfide complexes, through external membranes, leading to accidental methylation of some of the intracellular Hg(II) (9). However, this view is based on indirect data and modeling, as the precipitation of metal sulfides in the medium and the extensive Hg binding to the surface of the organisms (10-12) have made it difficult to directly measure Hg(II) uptake in methylating bacteria.In previous work (13), we demonstrated that the cysteine complex of Hg(II) was available to the FeRB Geobacter sulfurreducens PCA and that Hg(II) was likely transported into the cell via an unknown facilitated transport mechanism. Here we examine the energy dependence and specificity of Hg(II) uptake and methylation by both G. sulfurreducens and ...
The curious phenomenon of similar levels of methylmercury (MeHg) accumulation in fish from contaminated and pristine environments may be explained by the observation that the proportion of total mercury (HgT) present as MeHg is inversely related to HgT in natural waters. We hypothesize that this "MeHg accumulation paradox" is explained by the quantitative induction of bacterial enzymes that are encoded by the mercury resistance (mer) operon, organomercury lyase (MerB), and mercuric reductase (MerA) by inorganic Hg (Hg[II]). We tested this hypothesis in two ecosystems in New Jersey: Berry's Creek in the Meadowlands (ML) and Pine Barren (PB) lakes. Across all sites, an inverse correlation (r2 = 0.80) between the concentration of HgT (ML, 113-4220 ng L(-1); PB, 0.3-5.4 ng L(-1)) and the proportion of HgT as MeHg (MeHg in ML and PB ranged from 0.08 to 1.6 and from 0.03 to 0.34 ng L(-1), respectively) was observed. The planktonic microbial community in Meadowlands surface waters exhibited adaptation to mercury, the presence of mer genes and mRNA transcripts, and high rates of reductive demethylation (k(deg) = 0.19 day(-1)). In contrast, the microbial community of PB was not adapted to mercury and demonstrated low rates of oxidative demethylation (k(deg) = 0.01 day(-1)). These results strongly support our hypothesis and show that the degradation of MeHg by mer-encoded enzymes by the water column microbiota of contaminated environments can significantly affect the amount of MeHg that is available for entry into the aquatic food web.
The production of methylmercury by some bacteria is a key first step in the accumulation and biomagnification of this toxic substance in aquatic food webs, a major human health concern. By direct measurement of cellular Hg(II) uptake in model iron and sulfate reducing bacteria, we have observed that specific trace metals, such as Zn(II) and Cd(II), inhibit uptake and methylation in these organisms, whereas other metals, such as Ni(II), Co(II), or Fe(II), do not. The inhibition of Hg(II) methylation by Zn(II) was competitive in nature and related to the concentration of inorganically complexed Zn(II) (Zn'). The inhibition of Hg(II) methylation was alleviated by decreasing the free Zn' concentration through complexation with nitrilotriacetic acid without altering the speciation of Hg(II). The inhibitory effect by Zn(II) was observed when either Hg-cysteine complexes or neutral HgCl2 dominated the speciation of Hg(II), demonstrating that both charged and neutral species are transported into the cytosol by an active rather than passive process. We propose that Hg(II) uptake is the result of its accidental uptake by metal transporter(s), possibly one effecting the transport of Zn(II).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.