Afamelanotide, the first α-melanocyte-stimulating hormone (MSH) analogue, synthesized in 1980, was broadly investigated in all aspects of pigmentation because its activity and stability were higher than the natural hormone. Afamelanotide binds to the melanocortin-1 receptor (MC1R), and MC1R signaling increases melanin synthesis, induces antioxidant activities, enhances DNA repair processes and modulates inflammation. The loss-of-function variants of the MC1R present in fair-skinned Caucasians are less effectively activated by the natural hormone. Afamelanotide was the first α-MSH analogue to be applied to human volunteers. Ten daily doses of between 0.08 and 0.21 mg/kg in saline injected subcutaneously resulted in long-lasting skin pigmentation and enabled basic pharmacokinetics. Subcutaneous application had full bioavailability, but neither oral nor transdermal application resulted in measurable plasma concentrations or pigmentation response. Two trials in human volunteers showed that neither MC1R variants nor fair skin reduced the afamelanotide-induced increase in skin pigmentation. A controlled-release formulation optimizes administration in man and is effective at a lower dose than the daily saline injections. Promising therapeutic results were published in polymorphic light eruption, erythropoietic protoporphyria (EPP), solar urticaria, Hailey-Hailey disease and vitiligo. In 2014, afamelanotide was approved by the European Medicines Agency for the prevention of phototoxicity in adult patients with EPP. No late effects were reported in volunteers 25 years after the first exposure or after continuous long-term application of up to 8 years in EPP patients, and an immunogenic potential has been excluded. Generally, adverse effects were benign in all trials.
Patients with erythropoietic protoporphyria (EPP) have reduced activity of the enzyme ferrochelatase that catalyzes the insertion of iron into protoporphyrin IX (PPIX) to form heme. As the result of ferrochelatase deficiency, PPIX accumulates and causes severe photosensitivity. Among different patients, the concentration of PPIX varies considerably. In addition to photosensitivity, patients frequently exhibit low serum iron and a microcytic hypochromic anemia. The aims of this study were to (1) search for factors related to PPIX concentration in EPP, and (2) characterize anemia in EPP, i.e., whether it is the result of an absolute iron deficiency or the anemia of chronic disease (ACD). Blood samples from 67 EPP patients (51 Italian and 16 Swiss) and 21 healthy volunteers were analyzed. EPP patients had lower ferritin (p = 0.021) and hepcidin (p = 0.031) concentrations and higher zinc-protoporphyrin (p < 0.0001) and soluble-transferrin-receptor (p = 0.0007) concentrations compared with controls. This indicated that anemia in EPP resulted from an absolute iron deficiency. Among EPP patients, PPIX concentrations correlated with both growth differentiation factor (GDF) 15 (p = 0.012) and male gender (p = 0.015). Among a subgroup of patients who were iron replete, hemoglobin levels were normal, which suggested that iron but not ferrochelatase is the limiting factor in heme synthesis of individuals with EPP.
Erythropoietic protoporphyria consists of two different genetic diseases, erythropoietic protoporphyria (EPP) and X-linked erythropoietic protoporphyria (XLEPP). Both of them are often accompanied by iron deficiency. Iron supplementation appears to be beneficial in XLEPP, although the clinical experience until to date is limited. In EPP, iron supplementation is discussed ambiguously and may cause harm in the majority of cases. This minireview summarizes the limited knowledge on the connections of iron metabolism to regulation of porphyrin and heme synthesis and the influence these regulations may have on disease severity in the protoporphyrias. Further, we propose clinical guidelines, how to manage iron deficiency in both XLEPP and EPP.
Ingestion of blood resulted in an increase in faecal calprotectin-positive tests. Gastrointestinal bleeding should be considered as a potential cause of mild faecal calprotectin elevation > 50 µg/g; however, increased faecal calprotectin above > 250-300 µg/g, the established cut-off for relevant intestinal inflammation in patients with inflammatory bowel disease, is rare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.