Electroconducting polymers from the group of synthetic metals are extensively investigated due to numerous properties perspective in practical application. These materials may be synthesized by both chemical and electrochemical procedures. Chemical synthesis is suitable when bulk quantities of the polymer are necessary and up to date it presents dominant commercial method of producing electroconducting polymers. Nevertheless, the electrochemical synthesis has its advantages; it avoids usage of oxidants since conducting polymeric material is obtained at anode upon application of positive potential, leading to increased purity. On the other hand, since the polymer is deposited onto electrode, further electrochemical characterization is facilitated. Owing to actuality of the research in the field, this text aims to describe important aspects of electrochemical synthesis of electroconducting polymers, with special emphasis to polyaniline and polypyrrole.
Silver powders chemically synthesized by reduction with hydrazine and those produced by electrolysis from the basic (nitrate) and complex (ammonium) electrolytes were examined by X-ray diffraction (XRD) and scanning electron microscopic (SEM) analysis of the produced particles. Morphologies of the obtained particles were very different at the macro level. The needle-like dendrites, as well as the mixture of irregular and regular crystals, were formed from the nitrate electrolyte, while the highly-branched pine-like dendrites with clearly noticeable spherical grains were formed from the ammonium electrolyte. The agglomerates of spherical grains were formed by reduction with hydrazine. In the particles obtained from the nitrate electrolyte, Ag crystallites were strongly oriented in the (111) plane. Although morphologies of Ag particles were very different at the macro level, the similarity at the micro level was observed between chemically-synthesized particles and those obtained by electrolysis from the ammonium electrolyte. Both types of particles were constructed from the spherical grains. This similarity at the micro level was accompanied by the similar XRD patterns, which were very close to the Ag standard with a random orientation of Ag crystallites. For the first time, morphologies of powder particles were correlated with their crystal structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.