Plant-Microbe interactions are complex associations that feature recognition of Pathogen Associated Molecular Patterns by the plant immune system and dampening of subsequent responses by pathogen encoded secreted effectors. With large effector repertoires now identified in a range of sequenced microbial genomes, much attention centers on understanding their roles in immunity or disease. These studies not only allow identification of pathogen virulence factors and strategies, they also provide an important molecular toolset suited for studying immunity in plants. The Phytophthora intracellular effector repertoire encodes a large class of proteins that translocate into host cells and exclusively target the host nucleus. Recent functional studies have implicated the CRN protein family as an important class of diverse effectors that target distinct subnuclear compartments and modify host cell signaling. Here, we characterized three necrosis inducing CRNs and show that there are differences in the levels of cell death. We show that only expression of CRN20_624 has an additive effect on PAMP induced cell death but not AVR3a induced ETI. Given their distinctive phenotypes, we assessed localization of each CRN with a set of nuclear markers and found clear differences in CRN subnuclear distribution patterns. These assays also revealed that expression of CRN83_152 leads to a distinct change in nuclear chromatin organization, suggesting a distinct series of events that leads to cell death upon over-expression. Taken together, our results suggest diverse functions carried by CRN C-termini, which can be exploited to identify novel processes that take place in the host nucleus and are required for immunity or susceptibility.
Summary• The ability of plants to adapt to multiple stresses imposed by the natural environment requires cross-talk and fine-tuning of stress signalling pathways. The hybrid histidine kinase Arabidopsis histidine kinase 5 (AHK5) is known to mediate stomatal responses to exogenous and endogenous signals in Arabidopsis thaliana. The purpose of this study was to determine whether the function of AHK5 in stress signalling extends beyond stomatal responses.• Plant growth responses to abiotic stresses, tissue susceptibility to bacterial and fungal pathogens, and hormone production and metabolism of reactive oxygen species were monitored in a T-DNA insertion mutant of AHK5.• The findings of this study indicate that AHK5 positively regulates salt sensitivity and contributes to resistance to the bacterium Pseudomonas syringae pv. tomato DC3000 and the fungal pathogen Botrytis cinerea.• This is the first report of a role for AHK5 in the regulation of survival following challenge by a hemi-biotrophic bacterium and a necrotrophic fungus, as well as in the growth response to salt stress. The function of AHK5 in regulating the production of hormones and redox homeostasis is discussed.
Our conclusions are that laundry in a domestic situation at 60°C (140°F) for 10 minutes is sufficient to decontaminate hospital uniforms and reduces the bacterial load by more than 7-log reduction, that items left in the pockets are decontaminated to the same extent, that the addition of either a biological detergent or a nonbiological detergent is beneficial in removing MRSA from experimentally contaminated swatches, and that uniforms become recontaminated with low numbers of principally gram-negative bacteria after laundry but that these are effectively removed by ironing.
Histidine kinases have been shown to mediate responses to endogenous and exogenous stimuli in organisms such as yeast, bacteria and plants. In the model plant Arabidopsis, histidine kinases have been shown to function in hormone signaling, and abiotic and biotic stress responses. More recently, the least characterized of the Arabidopsis histidine kinases, AHK5, was demonstrated to function in resistance toward the virulent bacterium Pseudomonas syringae pv tomato DC3000 (PstDC3000) and the necrotrophic fungus Botrytis cinerea, and as a negative regulator of tolerance toward salinity. Here, we present data which indicate that AHK5 also impacts on drought stress resistance and on the outcome of an incompatible interaction with avrRpm1-expressing PstDC3000 (PstDC3000 (avrRpm1)). We present a model which proposes a role for reactive oxygen species (ROS) and hormones in integrating abiotic and biotic stress responses via AHK5.
Phytophthora spp. cause devastating disease epidemics on important crop plants and pose a grave threat to global crop production. Critically, Phytophthora pathogens represent a distinct evolutionary lineage in which pathogenicity has been acquired independently. Therefore, there is an urgent need to understand and disrupt the processes that drive infection if we aspire to defeat oomycete pathogens in the field. One area that has received little attention thus far in this respect is the regulation of Phytophthora gene expression during infection. Here, we characterize PcNMRAL1 (Phyca11_505845), a homolog of the Aspergillus nidulans nitrogen metabolite repression regulator NMRA and demonstrate a role for this protein in progression of the Phytophthora capsici infection cycle. PcNmrAL1 is coexpressed with the biotrophic marker gene PcHmp1 (haustorial membrane protein 1) and, when overexpressed, extends the biotrophic infection stage. Microarray analyses revealed that PcNmrAL1 overexpression in P. capsici leads to large-scale transcriptional changes during infection and in vitro. Importantly, detailed analysis reveals that PcNmrAL1 overexpression induces biotrophy-associated genes while repressing those associated with necrotrophy. In addition to factors controlling transcription, translation, and nitrogen metabolism, PcNMRAL1 helps regulate the expression of a considerable effector repertoire in P. capsici. Our data suggests that PcNMRAL1 is a transcriptional regulator that mediates the biotrophy to necrotrophy transition. PcNMRAL1 represents a novel factor that may drive the Phytophthora disease cycle on crops. This study provides the first insight into mechanisms that regulate infection-related processes in Phytophthora spp. and provides a platform for further studies aimed at disabling pathogenesis and preventing crop losses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.