Interleukin 17-producing γδ T (γδT17) cells have unconventional trafficking characteristics, residing in mucocutaneous tissues but also homing into inflamed tissues via circulation. Despite being fundamental to γδT17-driven early protective immunity and exacerbation of autoimmunity and cancer, migratory cues controlling γδT17 cell positioning in barrier tissues and recruitment to inflammatory sites are still unclear. Here we show that γδT17 cells constitutively express chemokine receptors CCR6 and CCR2. While CCR6 recruits resting γδT17 cells to the dermis, CCR2 drives rapid γδT17 cell recruitment to inflamed tissues during autoimmunity, cancer and infection. Downregulation of CCR6 by IRF4 and BATF upon γδT17 activation is required for optimal recruitment of γδT17 cells to inflamed tissue by preventing their sequestration into uninflamed dermis. These findings establish a lymphocyte trafficking model whereby a hierarchy of homing signals is prioritized by dynamic receptor expression to drive both tissue surveillance and rapid recruitment of γδT17 cells to inflammatory lesions.
Light-sheet microscopy has emerged as the preferred means for high-throughput volumetric imaging of cleared tissues. However, there is a need for a user-friendly system that can address imaging applications with varied requirements in terms of resolution (mesoscopic to sub-micrometer), sample geometry (size, shape, and number), and compatibility with tissue-clearing protocols and sample holders of various refractive indices. We present a 'hybrid' system that combines a novel non-orthogonal dual-objective and conventional (orthogonal) open-top light-sheet architecture for versatile multi-scale volumetric imaging. Main TextRecent advances in tissue-clearing protocols greatly reduce optical scattering, aberrations, and background uorescence, enabling deep-tissue imaging with high resolution and contrast. These approaches have yielded new insights in many elds, including neuroscience, developmental biology, and anatomic pathology [1][2][3][4][5][6][7][8][9][10][11]. Light-sheet microscopy has emerged as a preferred means for highresolution volumetric imaging of cleared tissues due to its unrivaled speed and low photobleaching [12,13]. Many variants of light-sheet microscopes have been developed in recent years by academic researchers and commercial entities to tackle a diverse range of imaging applications (Error! Reference source not found. and Error! Reference source not found.) [14][15][16][17][18]. Whereas individual light-sheet systems are well-suited for a subset of cleared-tissue applications, trade-offs are inevitable. In particular, no current light-sheet microscope can satisfy all of the following requirements: (1) user-friendly mounting
Objectives Intravenous infusion of Intralipid is an adjunct therapy in assisted reproduction treatment (ART) when immune‐associated infertility is suspected. Here, we evaluated the effect of Intralipid infusion on regulatory T cells (Treg cells), effector T cells and plasma cytokines in peripheral blood of women undertaking IVF. Methods This prospective, observational pilot study assessed Intralipid infusion in 14 women exhibiting recurrent implantation failure, a clinical sign of immune‐associated infertility. Peripheral blood was collected immediately prior to and 7 days after intravenous administration of Intralipid. Plasma cytokines were measured by Luminex, and T‐cell subsets were analysed by flow cytometry. Results A small increase in conventional CD8 + T cells occurred after Intralipid infusion, but no change was seen in CD4 + Treg cells, or naïve, memory or effector memory T cells. Proliferation marker Ki67, transcription factors Tbet and RORγt, and markers of suppressive capacity CTLA4 and HLA‐DR were unchanged. Dimensionality‐reduction analysis using the tSNE algorithm confirmed no phenotype shift within Treg cells or other T cells. Intralipid infusion increased plasma CCL2, CCL3, CXCL8, GM‐CSF, G‐CSF, IL‐6, IL‐21, TNF and VEGF. Conclusion Intralipid infusion elicited elevated pro‐inflammatory cytokines, and a minor increase in CD8 + T cells, but no change in pro‐tolerogenic Treg cells. Notwithstanding the limitation of no placebo control, the results do not support Intralipid as a candidate intervention to attenuate the Treg cell response in women undergoing ART. Future placebo‐controlled studies are needed to confirm the potential efficacy and clinical significance of Intralipid in attenuating cytokine induction and circulating CD8 + T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.