The study focuses on developing novel cottage cheese containing spices with acceptable sensory properties, increased biological value and extended shelf life. Thirty types of cheese with added fresh or dried parsley, dill, pepper, garlic and rosemary were produced. Characterisation of phenolic compounds, antioxidant capacity and antibacterial activity of spices and cheese samples were evaluated. The cheese containing fresh pepper and fresh and dried herbs showed excellent sensory properties, with the best results obtained with fresh sweet red pepper. Dry rosemary had the highest antioxidant and antibacterial activity due to high mass fractions of caffeic and rosmarinic acids as well as high mass fractions of flavones and phenolic diterpenes. The plant extracts examined and effectively reduce numbers of foodborne pathogens like ,, , and therefore have potential as natural preservatives and antioxidants.
Western diet is frequently low in essential metal ions. A common method for preventing metal ion deficiency is pharmacological supplementation, especially in a highly available form such as metalo-protein complexes. Accordingly, in this work, specific lactic acid bacteria were assessed for their ability to bind copper ions. Significant amounts of copper ions were bound, and the binding potential was found to be strain specific. Differences among the strains were evaluated with the Langmuir model for biosorption. Binding of copper was a fast process, strongly influenced by ionic strength, pH and biomass concentration. During the process, copper ions significantly reduced cell viability. Discharge of copper ions in a simulated gastrointestinal tract was examined; 85-90% of copper ions bound to LAB were discharged in the gastrointestinal model system.
Considering the enormous importance of protein turns as participants in various biological events, such as protein–protein interactions, great efforts have been made to develop their conformationally and proteolytically stable mimetics. Ferrocene-1,1′-diamine was previously shown to nucleate the stable turn structures in peptides prepared by conjugation with Ala (III) and Ala−Pro (VI). Here, we prepared the homochiral conjugates of ferrocene-1,1′-diamine with l-/d-Phe (32/35), l-/d-Val (33/36), and l-/d-Leu (34/37) to investigate (1) whether the organometallic template induces the turn structure upon conjugation with amino acids, and (2) whether the bulky or branched side chains of Phe, Val, and Leu affect hydrogen bonding. Detailed spectroscopic (IR, NMR, CD), X-ray, and DFT studies revealed the presence of two simultaneous 10-membered interstrand hydrogen bonds, i.e., two simultaneous β-turns in goal compounds. A preliminary biological evaluation of d-Leu conjugate 37 showed its modest potential to induce cell cycle arrest in the G0/G1 phase in the HeLa cell line but these results need further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.