Key Points Ibrutinib is the first clinically viable irreversible ITK inhibitor. Ibrutinib inhibits the formation of Th2 but not Th1 immunity.
• Ibrutinib induced a high rate of sustained responses for patients with cGVHD and inadequate response to corticosteroid-containing therapy.• This trial supported the approval of ibrutinib for treatment of adult patients with cGVHD after failure of $1 lines of systemic therapy.Chronic graft-versus-host disease (cGVHD) is a serious complication of allogeneic stem cell transplantation with few effective options available after failure of corticosteroids. B and T cells play a role in the pathophysiology of cGVHD. Ibrutinib inhibits Bruton tyrosine kinase in B cells and interleukin-2-inducible T-cell kinase in T cells. In preclinical models, ibrutinib reduced severity of cGVHD. This multicenter, open-label study evaluated the safety and efficacy of ibrutinib in patients with active cGVHD with inadequate response to corticosteroid-containing therapies. Forty-two patients who had failed 1 to 3 prior treatments received ibrutinib (420 mg) daily until cGVHD progression. The primary efficacy end point was cGVHD response based on 2005 National Institutes of Health criteria. At a median follow-up of 13.9 months, best overall response was 67%; 71% of responders showed a sustained response for ‡20 weeks. Responses were observed across involved organs evaluated. Most patients with multiple cGVHD organ involvement had a multiorgan response. Median corticosteroid dose in responders decreased from 0.29 mg/kg per day at baseline to 0.12 mg/kg per day at week 49; 5 responders discontinued corticosteroids. The most common adverse events were fatigue, diarrhea, muscle spasms, nausea, and bruising. Plasma levels of soluble factors associated with inflammation, fibrosis, and cGVHD significantly decreased over time with ibrutinib. Ibrutinib resulted in clinically meaningful responses with acceptable safety in patients with ‡1 prior treatments for cGVHD. Based on these results, ibrutinib was approved in the United States for treatment of adult patients with cGVHD after failure of 1 or more lines of systemic therapy. This trial was registered at www.clinicaltrials.gov as #NCT02195869. (Blood. 2017;130(21):2243-2250
Key Points• T follicular helper cells and germinal center B cells are increased and strongly correlate with the development of cGVHD in a murine model. • Blocking mAbs for IL-21, ICOS, and CD40L are potential novel therapeutics for cGVHD.Chronic graft-versus-host disease (cGVHD) is a leading cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Having shown that germinal center (GC) formation and immunoglobulin deposition are required for multiorgan system cGVHD and associated bronchiolitis obliterans syndrome (BOS) in a murine model, we hypothesized that T follicular helper (Tfh) cells are necessary for cGVHD by supporting GC formation and maintenance. We show that increased frequency of Tfh cells correlated with increased GC B cells, cGVHD, and BOS. Although administering a highly depletionary anti-CD20 monoclonal antibody (mAb) to mice with established cGVHD resulted in peripheral B-cell depletion, B cells remained in the lung, and BOS was not reversed. BOS could be treated by eliminating production of interleukin-21 (IL-21) by donor T cells or IL-21 receptor (IL-21R) signaling of donor B cells. Development of BOS was dependent upon T cells expressing the chemokine receptor CXCR5 to facilitate T-cell trafficking to secondary lymphoid organ follicles. Blocking mAbs for IL-21/IL-21R, inducible T-cell costimulator (ICOS)/ICOS ligand, and CD40L/CD40 hindered GC formation and cGVHD. These data provide novel insights into cGVHD pathogenesis, indicate a role for Tfh cells in these processes, and suggest a new line of therapy using mAbs targeting Tfh cells to reverse cGVHD. (Blood. 2014;123(25):3988-3998)
Chronic lymphocytic leukemia (CLL) is characterized by constitutive activation of the B-cell receptor (BCR) signaling pathway, but variable responsiveness of the BCR to antigen ligation. Bruton's tyrosine kinase (BTK) shows constitutive activity in CLL and is the target of irreversible inhibition by ibrutinib, an orally bioavailable kinase inhibitor that has shown outstanding activity in CLL. Early clinical results in CLL with other reversible and irreversible BTK inhibitors have been less promising, however, raising the question of whether BTK kinase activity is an important target of ibrutinib and also in CLL. To determine the role of BTK in CLL, we used patient samples and the Em-TCL1 (TCL1) transgenic mouse model of CLL, which results in spontaneous leukemia development. Inhibition of BTK in primary human CLL cells by small interfering RNA promotes apoptosis. Inhibition of BTK kinase activity through either targeted genetic inactivation or ibrutinib in the TCL1 mouse significantly delays the development of CLL, demonstrating that BTK is a critical kinase for CLL development and expansion and thus an important target of ibrutinib. Collectively, our data confirm the importance of kinase-functional BTK in CLL. (Blood. 2014; 123(8):1207-1213 IntroductionChronic lymphocytic leukemia (CLL) is a common adult leukemia that is currently incurable outside of stem cell transplantation. Although response to IgM ligation is variable, the B-cell receptor (BCR) signaling pathway is aberrantly active in this disease, with antigendependent 1,2 or -independent autonomous activation, 3 leading to constitutive activation of kinases inducing cell survival and proliferation. [4][5][6][7] One BCR pathway kinase that is uniformly overexpressed at the transcript level 8 and constitutively phosphorylated in CLL is Bruton's tyrosine kinase (BTK). Ibrutinib, an orally bioavailable irreversible inhibitor of BTK, has recently been shown to have outstanding clinical activity in CLL with extended durable remissions in both untreated and relapsed disease. 9 BTK is a critical mediator of B-lymphocyte signaling and development. Mutations in various domains are responsible for X-linked agammaglobulinemia, 10,11 a disorder characterized by developmental arrest of B cells and profound humoral immune deficiency in humans. A point mutation in the Pleckstrin homology domain is responsible for the milder X-linked immunodeficiency (XID) phenotype in the mouse, 12,13 which is characterized by reduced numbers of circulating B cells and reduced serum immunoglobulins. BTK is also a critical mediator in B-cell signaling. It is recruited to the membrane-bound signalosome in the early stages of B-cell activation, and, following phosphorylation by Syk and Lyn, participates in the phosphorylation of phospholipase C, gamma 2 (PLCg2), which leads to production of the second messengers diacylglycerol and inositol-1,4,5-triphosphate. This pathway is amplified in CLL and leads to prosurvival signals through its effects on phosphatidylinositol 3-kinase (PI3K), PL...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.