On-bead high throughput screening of a medium sized (1000–2000 Da) branched peptide boronic acid (BPBA) library consisting of 46,656 unique sequences against HIV-1 RRE RNA generated peptides with binding affinities in the low micromolar range. In particular, BPBA1 had a Kd of 1.4 µM with RRE IIB, preference for RNA over DNA (27 fold), and selectivity of up to >75 fold against a panel of RRE IIB variants. Structure-activity studies suggest that the boronic acid moiety and “branching” in peptides are key structural features for efficient binding and selectivity for the folded RNA target. BPBA1 was efficiently taken up by HeLa and A2780 cells. RNA-footprinting studies revealed that the BPBA1 binding site encompasses a large surface area that spans both the upper stem as well as the internal loop regions of RRE IIB.
We report branched peptide boronic acids (BPBAs) that bind to RRE IIB from an on-bead high-throughput screening of a 3.3.4-library (46,656 compounds). We demonstrate that boronic acids are tunable moieties that afford a novel binding mode towards RNA.
Interest in peptides incorporating boronic acid moieties is increasing due to their potential as therapeutics/diagnostics for a variety of diseases such as cancer. The utility of peptide boronic acids may be expanded with access to vast libraries that can be deconvoluted rapidly and economically. Unfortunately, current detection protocols using mass spectrometry are laborious and confounded by boronic acid trimerization, which requires time consuming analysis of dehydration products. These issues are exacerbated when the peptide sequence is unknown, as with de novo sequencing, and especially when multiple boronic acid moieties are present. Thus, a rapid, reliable and simple method for peptide identification is of utmost importance. Herein, we report the identification and sequencing of linear and branched peptide boronic acids containing up to five boronic acid groups by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Protocols for preparation of pinacol boronic esters were adapted for efficient MALDI analysis of peptides. Additionally, a novel peptide boronic acid detection strategy was developed in which 2,5-dihydroxybenzoic acid (DHB) served as both matrix and derivatizing agent in a convenient, in situ, on-plate esterification. Finally, we demonstrate that DHB-modified peptide boronic acids from a single bead can be analyzed by MALDI-MSMS analysis, validating our approach for the identification and sequencing of branched peptide boronic acid libraries.
A simple and robust solid phase synthetic method for the ligation of diamondoids on the phosphate backbone of DNA with "click" chemistry using [Cu(CH(3)CN)(4)]PF(6) without a stabilizing ligand is reported. It was found that as the size of dimondoid increased, a corresponding increase in melting temperature was observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.