Herpesviruses persist indefinitely in their host through complex and poorly defined interactions that mediate latent, chronic or productive states of infection. Human cytomegalovirus (CMV or HCMV), a ubiquitous β-herpesvirus, coordinates the expression of two viral genes, UL135 and UL138, which have opposing roles in regulating viral replication. UL135 promotes reactivation from latency and virus replication, in part, by overcoming replication-suppressive effects of UL138. The mechanism by which UL135 and UL138 oppose one another is not known. We identified viral and host proteins interacting with UL138 protein (pUL138) to begin to define the mechanisms by which pUL135 and pUL138 function. We show that pUL135 and pUL138 regulate the viral cycle by targeting that same receptor tyrosine kinase (RTK) epidermal growth factor receptor (EGFR). EGFR is a major homeostatic regulator involved in cellular proliferation, differentiation, and survival, making it an ideal target for viral manipulation during infection. pUL135 promotes internalization and turnover of EGFR from the cell surface, whereas pUL138 preserves surface expression and activation of EGFR. We show that activated EGFR is sequestered within the infection-induced, juxtanuclear viral assembly compartment and is unresponsive to stress. Intriguingly, these findings suggest that CMV insulates active EGFR in the cell and that pUL135 and pUL138 function to fine-tune EGFR levels at the cell surface to allow the infected cell to respond to extracellular cues. Consistent with the role of pUL135 in promoting replication, inhibition of EGFR or the downstream phosphoinositide 3-kinase (PI3K) favors reactivation from latency and replication. We propose a model whereby pUL135 and pUL138 together with EGFR comprise a molecular switch that regulates states of latency and replication in HCMV infection by regulating EGFR trafficking to fine tune EGFR signaling.
The transcriptional program associated with herpesvirus latency and the viral genes regulating entry into and exit from latency are poorly understood and controversial. Here, we developed and validated a targeted enrichment platform and conducted large-scale transcriptome analyses of human cytomegalovirus (HCMV) infection. We used both an experimental hematopoietic cell model of latency and cells from naturally infected, healthy human subjects (clinical) to define the breadth of viral genes expressed. The viral transcriptome derived from experimental infection was highly correlated with that from clinical infection, validating our experimental latency model. These transcriptomes revealed a broader profile of gene expression during infection in hematopoietic cells than previously appreciated. Further, using recombinant viruses that establish a nonreactivating, latent-like or a replicative infection in CD34 hematopoietic progenitor cells, we defined classes of low to moderately expressed genes that are differentially regulated in latent vs. replicative states of infection. Most of these genes have yet to be studied in depth. By contrast, genes that were highly expressed, were expressed similarly in both latent and replicative infection. From these findings, a model emerges whereby low or moderately expressed genes may have the greatest impact on regulating the switch between viral latency and replication. The core set of viral genes expressed in natural infection and differentially regulated depending on the pattern of infection provides insight into the HCMV transcriptome associated with latency in the host and a resource for investigating virus-host interactions underlying persistence.
Human cytomegalovirus (HCMV) is a beta herpesvirus that establishes a life-long persistence in the host, like all herpesviruses, by way of a latent infection. During latency, viral genomes are maintained in a quieted state. Virus replication can be reactivated from latency in response to changes in cellular signaling caused by stress or differentiation. The past decade has brought great insights into the molecular basis of HCMV latency. Here, we review the complex persistence of HCMV with consideration of latent reservoirs, viral determinants and their host interactions, and host signaling and the control of cellular and viral gene expression that contributes to the establishment of and reactivation from latency.
Sustained phosphotinositide3-kinase (PI3K) signaling is critical to the maintenance of alpha and beta herpesvirus latency. We have previously shown that the beta-herpesvirus, human cytomegalovirus (CMV), regulates epidermal growth factor receptor (EGFR), upstream of PI3K, to control states of latency and reactivation. How signaling downstream of EGFR is regulated and how this impacts CMV infection and latency is not fully understood. We demonstrate that CMV downregulates EGFR early in the productive infection, which blunts the activation of EGFR and its downstream pathways in response to stimuli. However, CMV infection sustains basal levels of EGFR and downstream pathway activity in the context of latency in CD34+ hematopoietic progenitor cells (HPCs). Inhibition of MEK/ERK, STAT or PI3K/AKT pathways downstream of EGFR increases viral reactivation from latently infected CD34+ HPCs, defining a role for these pathways in latency. We hypothesized that CMV modulation of EGFR signaling might impact viral transcription important to latency. Indeed, EGF-stimulation increased expression of the UL138 latency gene, but not immediate early or early viral genes, suggesting that EGFR signaling promotes latent gene expression. The early growth response-1 (EGR1) transcription factor is induced downstream of EGFR signaling through the MEK/ERK pathway and is important for the maintenance of hematopoietic stemness. We demonstrate that EGR1 binds the viral genome upstream of UL138 and is sufficient to promote UL138 expression. Further, disruption of EGR1 binding upstream of UL138 prevents the establishment of latency in CD34+ HPCs. Our results indicate a model whereby UL138 modulation of EGFR signaling feeds back to promote UL138 gene expression and suppression of replication for latency. By this mechanism, the virus has hardwired itself into host cell biology to sense and respond to changes in homeostatic host cell signaling.
The establishment of human cytomegalovirus (HCMV) latency and persistence relies on the successful infection of hematopoietic cells, which serve as sites of viral persistence and contribute to viral spread. Here, using blocking antibodies and pharmacological inhibitors, we document that HCMV activation of the epidermal growth factor receptor (EGFR) and downstream phosphatidylinositol 3-kinase (PI3K) mediates viral entry into CD34 ϩ human progenitor cells (HPCs), resulting in distinct cellular trafficking and nuclear translocation of the virus compared to that in other immune cells, such as we have documented in monocytes. We argue that the EGFR allows HCMV to regulate the cellular functions of these replication-restricted cells via its signaling activity following viral binding. In addition to regulating HCMV entry/ trafficking, EGFR signaling may also shape the early steps required for the successful establishment of viral latency in CD34 ϩ cells, as pharmacological inhibition of EGFR increases the transcription of lytic IE1/IE2 mRNA while curbing the expression of latency-associated UL138 mRNA. EGFR signaling following infection of CD34 ϩ HPCs may also contribute to changes in hematopoietic potential, as treatment with the EGFR kinase (EGFRK) inhibitor AG1478 alters the expression of the cellular hematopoietic cytokine interleukin 12 (IL-12) in HCMV-infected cells but not in mockinfected cells. These findings, along with our previous work with monocytes, suggest that EGFR likely serves as an important determinant of HCMV tropism for select subsets of hematopoietic cells. Moreover, our new data suggest that EGFR is a key receptor for efficient viral entry and that the ensuing signaling regulates important early events required for successful infection of CD34 ϩ HPCs by HCMV.IMPORTANCE HCMV establishes lifelong persistence within the majority of the human population without causing overt pathogenesis in healthy individuals. Despite this, reactivation of HCMV from its latent reservoir in the bone marrow causes significant morbidity and mortality in immunologically compromised individuals, such as bone marrow and solid organ transplant patients. Lifelong persistent infection has also been linked with the development of various cardiovascular diseases in otherwise healthy individuals. Current HCMV therapeutics target lytic replication, but not the latent viral reservoir; thus, an understanding of the molecular basis for viral latency and persistence is paramount to controlling or eliminating HCMV infection. Here, we show that the viral signalosome activated by HCMV binding to its entry re-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.