Human cytomegalovirus (HCMV) is a beta herpesvirus that establishes a life-long persistence in the host, like all herpesviruses, by way of a latent infection. During latency, viral genomes are maintained in a quieted state. Virus replication can be reactivated from latency in response to changes in cellular signaling caused by stress or differentiation. The past decade has brought great insights into the molecular basis of HCMV latency. Here, we review the complex persistence of HCMV with consideration of latent reservoirs, viral determinants and their host interactions, and host signaling and the control of cellular and viral gene expression that contributes to the establishment of and reactivation from latency.
Human cytomegalovirus (HCMV) is a pervasive herpesvirus responsible for significant morbidity and mortality among immunodeficient/naive hosts. Following a primary HCMV infection, circulating blood monocytes mediate the systemic spread of the virus. Extending the short 48-h life span of monocytes is critical to the viral dissemination process, as these blood-borne cells are nonpermissive for virus replication until they are fully differentiated into macrophages. Here, we show that HCMV glycoprotein gB binding to cellular epidermal growth factor receptor (EGFR) during HCMV entry initiated a rapid (within 15 min) activation of the apoptosis suppressor Akt, which was maintained through 72 h. The virus-induced activation of Akt was more robust than that with the normal myeloid growth factor macrophage colony-stimulating factor (M-CSF) and was essential for infected monocytes to bypass the 48-h viability checkpoint. Activation of phosphoinositide 3-kinase (PI3K) following EGFR engagement by HCMV mediated the phosphorylation of Akt. Moreover, HCMV entry drove a switch away from the PI3K p110␦ isoform, which was required for the viability of uninfected monocytes, to the p110 isoform in order to facilitate the Akt-dependent prosurvival state within infected cells. Simultaneously, in contrast to M-CSF, HCMV promoted a rapid increase in SH2 domaincontaining inositol 5-phosphatase 1 (SHIP1) expression, leading to signaling through a noncanonical Akt activation pathway. To ensure maximum Akt activity, HCMV also induced an early phosphorylation-dependent inactivation of the negative regulator phosphatase and tensin homolog. Overall, our data indicate that HCMV hijacks the upstream Akt signaling network to induce a nontraditional activation of Akt and subsequently a prosurvival decision at the 48-h cell fate checkpoint, a vital step for HCMV's dissemination and persistence strategy. IMPORTANCEHCMV is found throughout the world with a prevalence of 55 to 100% within the human population. HCMV infection is generally asymptomatic in immunocompetent or naive individuals but is a significant cause of morbidity and mortality among the immunocompromised. Widespread organ inflammation is associated with symptomatic infections, which is a direct consequence of the viral dissemination strategy. Inflammatory peripheral blood monocytes facilitate the spread of HCMV. However, HCMV must subvert the naturally short life span of monocytes. In this work, we demonstrate that HCMV induces the activation of Akt, an antiapoptotic protein, in a manner distinct from that of normal myeloid growth factors. Moreover, we decipher how HCMV dysregulates the upstream Akt signaling network during viral entry to promote an Akt-dependent prosurvival state following infection. Delineation of the virus-specific mechanisms that regulate cellular prosurvival pathways in order to drive the survival of HCMV-infected monocytes is important to identifying new anti-HCMV therapeutic targets. Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus, with th...
Primary peripheral blood monocytes are responsible for the hematogenous dissemination of human cytomegalovirus (HCMV) following a primary infection. To facilitate viral spread, we have previously shown HCMV to extend the short 48-h life span of monocytes. Mechanistically, HCMV upregulated two specific cellular antiapoptotic proteins, myeloid leukemia sequence 1 (Mcl-1) and heat shock protein 27 (HSP27), to block the two proteolytic cleavages necessary for the formation of fully active caspase 3 and the subsequent initiation of apoptosis. We now show that HCMV more robustly upregulated Mcl-1 than normal myeloid growth factors and that Mcl-1 was the only myeloid survival factor to rapidly induce HSP27 prior to the 48-h cell fate checkpoint. We determined that HCMV glycoproteins gB and gH signal through the cellular epidermal growth factor receptor (EGFR) and ␣v3 integrin, respectively, during viral entry in order to drive the increase of Mcl-1 and HSP27 in an Akt-dependent manner. Although Akt is known to regulate protein stability and transcription, we found that gB-and gH-initiated signaling preferentially and cooperatively stimulated the synthesis of Mcl-1 and HSP27 through mTOR-mediated translation. Overall, these data suggest that the unique signaling network generated during the viral entry process stimulates the upregulation of select antiapoptotic proteins allowing for the differentiation of short-lived monocytes into long-lived macrophages, a key step in the viral dissemination strategy. H uman cytomegalovirus (HCMV), a betaherpesvirus, is highly prevalent throughout the United States, with 50 to 80% of the population being seropositive (1). HCMV infection is generally asymptomatic in immunocompetent individuals although infection has been linked to chronic inflammatory diseases, such as atherosclerosis and acute infection mononucleosis (2, 3). In contrast, HCMV infection causes significant morbidity and mortality in immunocompromised individuals, including AIDS patients, neonates, and transplant recipients (4-6). In these patients, HCMV diseases are diverse with respect to the organ site, including eyes (retinitis), brain (encephalopathy), central nervous system (polyradiculopathy), lungs (pneumonitis), and gastrointestinal tract (gastroenteritis), which can lead to systemic organ failure (7,8). The systemic pathogenesis established by HCMV is dependent on the spread of the virus from the initial point of infection to peripheral organs. IMPORTANCE Human cytomegalovirus (HCMV) infection is endemic within the human population. Although primary infection is generally asymptomatic in immunocompetent individualsMonocytes are believed to be the primary cell type responsible for the systemic dissemination of HCMV during both symptomatic and asymptomatic infections (9-11). However, monocytes have a limited life span of 48 h following release from the bone marrow, after which these cells either undergo apoptosis or differentiate into long-lived macrophages in the presence of a differentiation stimulus (1...
Primary peripheral blood monocytes are responsible for the hematogenous dissemination of human cytomegalovirus (HCMV) following a primary infection. In order to facilitate viral spread, HCMV extends the naturally short 48-h lifespan of monocytes by stimulating a non-canonical activation of Akt during viral entry, which leads to the increased expression of a specific subset of antiapoptotic proteins. In this study, global analysis of the Akt signaling network showed HCMV induced a more robust activation of the entire network when compared to normal myeloid growth factors. Furthermore, we found a unique interplay between HCMV-activated Akt and the stress response transcription heat shock factor 1 (HSF1) that allowed for the synthesis of both cap- and internal ribosome entry site (IRES)-containing antiapoptotic mRNAs such as myeloid cell leukemia-1 (Mcl-1) and X-linked inhibitor of apoptosis (XIAP), respectively. As generally a switch from cap-dependent to IRES-mediated translation occurs during cellular stress, the ability of HCMV to concurrently drive both types of translation produces a distinct milieu of prosurvival proteins needed for the viability of infected monocytes. Indeed, we found inhibition of XIAP led to death of ∼99% of HCMV-infected monocytes while having minimal effect on the viability of uninfected cells. Taken together, these data indicate that the aberrant activation of the Akt network by HCMV induces the upregulation of a unique subset of antiapoptotic proteins specifically required for the survival of infected monocytes. Consequently, our study highlights the possibility of exploiting these virus-induced changes to prevent viral spread in immunocompromised patients at high-risk for HCMV exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.