Exposure to the environmental pollutant trichloroethylene (TCE) has been linked to autoimmune disease development in humans. Chronic (32-week) low-level exposure to TCE has been shown to promote autoimmune hepatitis in association with CD4(+) T cell activation in autoimmune-prone MRL+/+ mice. MRL+/+ mice are usually thought of as a model of systemic lupus rather than an organ-specific disease such as autoimmune hepatitis. Consequently, the present study examined gene expression and metabolites to delineate the liver events that skewed the autoimmune response toward that organ in TCE-treated mice. Female MRL+/+ mice were treated with 0.5 mg/mL TCE in their drinking water. The results showed that TCE-induced autoimmune hepatitis could be detected in as little as 26 weeks. TCE exposure also generated a time-dependent increase in the number of antibodies specific for liver proteins. The gene expression correlated with the metabolite analysis to show that TCE upregulated the methionine/homocysteine pathway in the liver after 26 weeks of exposure. The results also showed that TCE exposure altered the expression of selective hepatic genes associated with immunity and inflammation. On the basis of these results, future mechanistic studies will focus on how alterations in genes associated with immunity and inflammation, in conjunction with protein alterations in the liver, promote liver immunogenicity in TCE-treated MRL+/+ mice.
The industrial solvent trichloroethylene (TCE) is a widespread environmental contaminant known to impact the immune system. In the present study, female MRL+/+ mice were treated for 40 weeks with trichloroacetaldehyde hydrate (TCAH), a metabolite of TCE, in the drinking water. The results were compared with the data from an earlier study in which MRL+/+ mice were exposed to TCAH for 4 weeks. Following a 40-week exposure, the mice developed skin inflammation and dose-dependent alopecia. In addition, TCAH appeared to modulate the CD4(+) T-cell subset by promoting the expression of an activated/effector (i.e., CD62L(lo)) phenotype with an increased capacity to secrete the proinflammatory cytokine interferon-gamma. However, unlike what was observed after only 4 weeks of exposure, TCAH did not significantly attenuate activation-induced cell death (AICD) or the expression of the death receptor FasL in CD4(+) T cells. Some metalloproteinases (MMPs) are thought to play a role in susceptibility to AICD by inducing FasL shedding. Thus, both the 4- and 40-week sera were tested for MMP-7 levels in an attempt to explain the disparate results of TCAH on AICD and FasL expression. Serum MMP-7 levels were significantly higher in mice exposed to TCAH for 4 weeks. In contrast, the serum MMP-7 levels were increased in all the mice by 40 weeks when compared with a nonautoimmune strain. Taken together, a chronic exposure to TCAH promotes alopecia and skin inflammation. The early effects of TCAH on MMP-7 levels may provide a mechanism by which TCAH promotes skin pathology.
Chromogranin A is present in the secretory granules of endocrine cells and functions in hormone packaging, secretory granule stabilization, and regulation of hormone secretion. Immunohistochemical identification of chromogranin A can facilitate diagnosis of endocrine neoplasia. Normal and neoplastic canine tissues were stained immunohistochemically for chromogranin A. Staining of normal endocrine tissues demonstrated chromogranin A in chromaffin cells of the adrenal medulla, C cells of the thyroid gland, and pancreatic islets. The parathyroid chief cells and anterior pituitary stained lightly positive for chromogranin A. Pheochromocytomas (7/7), chemodectomas (5/7), islet cell carcinomas (2/6), pituitary adenomas (4/6), parathyroid adenomas (3/7), and a C-cell carcinoma (1/1) stained positive for chromogranin A. The data indicate that chromogranin A is widely distributed in canine endocrine tissues, and immunohistochemical staining of chromogranin A can be used to confirm the presence of secretory granules in endocrine tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.